Results 1  10
of
12
Distinguishing between cause and effect
, 2008
"... We describe eight data sets that together formed the CauseEffectPairs task in the Causality Challenge #2: PotLuck competition. Each set consists of a sample of a pair of statistically dependent random variables. One variable is known to cause the other one, but this information was hidden from the ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
We describe eight data sets that together formed the CauseEffectPairs task in the Causality Challenge #2: PotLuck competition. Each set consists of a sample of a pair of statistically dependent random variables. One variable is known to cause the other one, but this information was hidden from the participants; the task was to identify which of the two variables was the cause and which one the effect, based upon the observed sample. The data sets were chosen such that we expect common agreement on the ground truth. Even though part of the statistical dependences may also be due to hidden common causes, common sense tells us that there is a significant causeeffect relation between the two variables in each pair. We also present baseline results using three different causal inference methods.
On causally asymmetric versions of Occam’s Razor and their relation to thermodynamics
, 2007
"... and their relation to thermodynamics ..."
Inferring deterministic causal relations
"... We consider two variables that are related to each other by an invertible function. While it has previously been shown that the dependence structure of the noise can provide hints to determine which of the two variables is the cause, we presently show that even in the deterministic (noisefree) case ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
We consider two variables that are related to each other by an invertible function. While it has previously been shown that the dependence structure of the noise can provide hints to determine which of the two variables is the cause, we presently show that even in the deterministic (noisefree) case, there are asymmetries that can be exploited for causal inference. Our method is based on the idea that if the function and the probability density of the cause are chosen independently, then the distribution of the effect will, in a certain sense, depend on the function. We provide a theoretical analysis of this method, showing that it also works in the low noise regime, and link it to information geometry. We report strong empirical results on various realworld data sets from different domains. 1
Causality: objectives and assessment
 In NIPS 2008 workshop on causality, volume 7. JMLR W&CP, in press, 2009a
"... The NIPS 2008 workshop on causality provided a forum for researchers from different horizons to share their view on causal modeling and address the difficult question of assessing causal models. There has been a vivid debate on properly separating the notion of causality from particular models such ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
The NIPS 2008 workshop on causality provided a forum for researchers from different horizons to share their view on causal modeling and address the difficult question of assessing causal models. There has been a vivid debate on properly separating the notion of causality from particular models such as graphical models, which have been dominating the field in the past few years. Part of the workshop was dedicated to discussing the results of a challenge, which offered a wide variety of applications of causal modeling. We have regrouped in these proceedings the best papers presented. Most lectures were videotaped or recorded. All information regarding the challenge and the lectures are found at
Identifiability of causal graphs using functional models
 In UAI
, 2011
"... This work addresses the following question: Under what assumptions on the data generating process can one infer the causal graph from the joint distribution? The approach taken by conditional independencebased causal discovery methods is based on two assumptions: the Markov condition and faithfulnes ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
This work addresses the following question: Under what assumptions on the data generating process can one infer the causal graph from the joint distribution? The approach taken by conditional independencebased causal discovery methods is based on two assumptions: the Markov condition and faithfulness. It has been shown that under these assumptions the causal graph can be identified up to Markov equivalence (some arrows remain undirected) using methods like the PC algorithm. In this work we propose an alternative by defining Identifiable Functional Model Classes (IFMOCs). As our main theorem we prove that if the data generating process belongs to an IFMOC, one can identify the complete causal graph. To the best of our knowledge this is the first identifiability result of this kind that is not limited to linear functional relationships. We discuss how the IFMOC assumption and the Markov and faithfulness assumptions relate to each other and explain why we believe that the IFMOC assumption can be tested more easily on given data. We further provide a practical algorithm that recovers the causal graph from finitely many data; experiments on simulated data support the theoretical findings. 1
On the entropy production of time series with unidirectional linearity
 Journ. Stat. Phys
"... linearity ..."
Justifying additivenoisemodel based causal discovery via algorithmic information
, 2010
"... theory ..."
Causal Markov condition for submodular information measures
"... The causal Markov condition (CMC) is a postulate that links observations to causality. It describes the conditional independences among the observations that are entailed by a causal hypothesis in terms of a directed acyclic graph. In the conventional setting, the observations are random variables a ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
The causal Markov condition (CMC) is a postulate that links observations to causality. It describes the conditional independences among the observations that are entailed by a causal hypothesis in terms of a directed acyclic graph. In the conventional setting, the observations are random variables and the independence is a statistical one, i.e., the information content of observations is measured in terms of Shannon entropy. We formulate a generalized CMC for any kind of observations on which independence is defined via an arbitrary submodular information measure. Recently, this has been discussed for observations in terms of binary strings where information is understood in the sense of Kolmogorov complexity. Our approach enables us to find computable alternatives to Kolmogorov complexity, e.g., the length of a text after applying existing data compression schemes. We show that our CMC is justified if one restricts the attention to a class of causal mechanisms that is adapted to the respective information measure. Our justification is similar to deriving the statistical CMC from functional models of causality, where every variable is a deterministic function of its observed causes and an unobserved noise term. Our experiments on real data demonstrate the performance of compression based causal inference. 1