Results 1  10
of
15
Adaptive Functional Programming
 IN PROCEEDINGS OF THE 29TH ANNUAL ACM SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES
, 2001
"... An adaptive computation maintains the relationship between its input and output as the input changes. Although various techniques for adaptive computing have been proposed, they remain limited in their scope of applicability. We propose a general mechanism for adaptive computing that enables one to ..."
Abstract

Cited by 64 (23 self)
 Add to MetaCart
An adaptive computation maintains the relationship between its input and output as the input changes. Although various techniques for adaptive computing have been proposed, they remain limited in their scope of applicability. We propose a general mechanism for adaptive computing that enables one to make any purelyfunctional program adaptive. We show
Purely Functional Representations of Catenable Sorted Lists.
 In Proceedings of the 28th Annual ACM Symposium on Theory of Computing
, 1996
"... The power of purely functional programming in the construction of data structures has received much attention, not only because functional languages have many desirable properties, but because structures built purely functionally are automatically fully persistent: any and all versions of a structur ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
The power of purely functional programming in the construction of data structures has received much attention, not only because functional languages have many desirable properties, but because structures built purely functionally are automatically fully persistent: any and all versions of a structure can coexist indefinitely. Recent results illustrate the surprising power of pure functionality. One such result was the development of a representation of doubleended queues with catenation that supports all operations, including catenation, in worstcase constant time [19].
Confluently Persistent Deques via DataStructural Bootstrapping
 J. of Algorithms
, 1993
"... We introduce datastructural bootstrapping, a technique to design data structures recursively, and use it to design confluently persistent deques. Our data structure requires O(log 3 k) worstcase time and space per deletion, where k is the total number of deque operations, and constant worstcase t ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
We introduce datastructural bootstrapping, a technique to design data structures recursively, and use it to design confluently persistent deques. Our data structure requires O(log 3 k) worstcase time and space per deletion, where k is the total number of deque operations, and constant worstcase time and space for other operations. Further, the data structure allows a purely functional implementation, with no side effects. This improves a previous result of Driscoll, Sleator, and Tarjan. 1 An extended abstract of this paper was presented at the 4th ACMSIAM Symposium on Discrete Algorithms, 1993. 2 Supported by a Fannie and John Hertz Foundation fellowship, National Science Foundation Grant No. CCR8920505, and the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) under NSFSTC8809648. 3 Also affiliated with NEC Research Institute, 4 Independence Way, Princeton, NJ 08540. Research at Princeton University partially supported by the National Science Foundatio...
Data Structural Bootstrapping, Linear Path Compression, and Catenable Heap Ordered Double Ended Queues
 SIAM Journal on Computing
, 1992
"... A deque with heap order is a linear list of elements with realvalued keys which allows insertions and deletions of elements at both ends of the list. It also allows the findmin (equivalently findmax) operation, which returns the element of least (greatest) key, but it does not allow a general delet ..."
Abstract

Cited by 15 (7 self)
 Add to MetaCart
A deque with heap order is a linear list of elements with realvalued keys which allows insertions and deletions of elements at both ends of the list. It also allows the findmin (equivalently findmax) operation, which returns the element of least (greatest) key, but it does not allow a general deletemin (deletemax) operation. Such a data structure is also called a mindeque (maxdeque) . Whereas implementing mindeques in constant time per operation is a solved problem, catenating mindeques in sublogarithmic time has until now remained open. This paper provides an efficient implementation of catenable mindeques, yielding constant amortized time per operation. The important algorithmic technique employed is an idea which is best described as data structural bootstrapping: We abstract mindeques so that their elements represent other mindeques, effecting catenation while preserving heap order. The efficiency of the resulting data structure depends upon the complexity of a special case of pa...
Purely Functional, RealTime Deques with Catenation
 Journal of the ACM
, 1999
"... We describe an efficient, purely functional implementation of deques with catenation. In addition to being an intriguing problem in its own right, finding a purely functional implementation of catenable deques is required to add certain sophisticated programming constructs to functional programming ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
We describe an efficient, purely functional implementation of deques with catenation. In addition to being an intriguing problem in its own right, finding a purely functional implementation of catenable deques is required to add certain sophisticated programming constructs to functional programming languages. Our solution has a worstcase running time of O(1) for each push, pop, inject, eject and catenation. The best previously known solution has an O(log k) time bound for the k deque operation. Our solution is not only faster but simpler. A key idea used in our result is an algorithmic technique related to the redundant digital representations used to avoid carry propagation in binary counting.
RealTime Deques, Multihead Turing Machines, and Purely Functional Programming
 In Conference on Functional Programming Languages and Computer Architecture
, 1993
"... We answer the following question: Can a deque (double ended queue) be implemented in a purely functional language such that each push or pop operation on either end of a queue is accomplished in O(1) time in the worst case? The answer is yes, thus solving a problem posted by Gajewska and Tarjan [1 ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
We answer the following question: Can a deque (double ended queue) be implemented in a purely functional language such that each push or pop operation on either end of a queue is accomplished in O(1) time in the worst case? The answer is yes, thus solving a problem posted by Gajewska and Tarjan [14] and by Ponder, McGeer, and Ng [25], and refining results of Sarnak [26] and Hoogerwoord [18]. We term such a deque realtime, since its constant worstcase behavior might be useful in real time programs (assuming realtime garbage collection [3], etc.) Furthermore, we show that no restriction of the functional language is necessary, and that push and pop operations on previous versions of a deque can also be achieved in constant time. We present a purely functional implementation of real time deques and its complexity analysis. We then show that the implementation has some interesting implications, and can be used to give a realtime simulation of a multihead Turing machine in a purel...
Simple Confluently Persistent Catenable Lists
 SIAM JOURNAL ON COMPUTING
, 1998
"... We consider the problem of maintaining persistent lists subject to concatenation and to insertions and deletions at both ends. Updates to a persistent data structure are nondestructive  each operation produces a new list incorporating the change, while keeping intact the list or lists to which it a ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
We consider the problem of maintaining persistent lists subject to concatenation and to insertions and deletions at both ends. Updates to a persistent data structure are nondestructive  each operation produces a new list incorporating the change, while keeping intact the list or lists to which it applies. Although general techniques exist for making data structures persistent, these techniques fail for structures that are subject to operations, such as catenation, that combine two or more versions. In this paper we develop a simple implementation of persistent doubleended queues with catenation that supports all deque operations in constant amortized time. Our implementation is functional if we allow memoization.
Making Data Structures Confluently Persistent
, 2001
"... We address a longstanding open problem of [10, 9], and present a general transformation that transforms any pointer based data structure to be confluently persistent. Such transformations for fully persistent data structures are given in [10], greatly improving the performance compared to the naive ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
We address a longstanding open problem of [10, 9], and present a general transformation that transforms any pointer based data structure to be confluently persistent. Such transformations for fully persistent data structures are given in [10], greatly improving the performance compared to the naive scheme of simply copying the inputs. Unlike fully persistent data structures, where both the naive scheme and the fully persistent scheme of [10] are feasible, we show that the naive scheme for confluently persistent data structures is itself infeasible (requires exponential space and time). Thus, prior to this paper there was no feasible method for implementing confluently persistent data structures at all. Our methods give an exponential reduction in space and time compared to the naive method, placing confluently persistent data structures in the realm of possibility.
Persistent data structures
 IN HANDBOOK ON DATA STRUCTURES AND APPLICATIONS, CRC PRESS 2001, DINESH MEHTA AND SARTAJ SAHNI (EDITORS) BOROUJERDI, A., AND MORET, B.M.E., "PERSISTENCY IN COMPUTATIONAL GEOMETRY," PROC. 7TH CANADIAN CONF. COMP. GEOMETRY, QUEBEC
, 1995
"... ..."
Realtime Garbage Collection of a Functional Persistent Heap
, 1999
"... Traditional database management systems perform updatesinplace and use logs and periodic checkpointing to efficiently achieve atomicity and durability. In this Thesis we shall present a different method, Shades, for achieving atomicity and durability using a copyonwrite policy instead of updates ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
Traditional database management systems perform updatesinplace and use logs and periodic checkpointing to efficiently achieve atomicity and durability. In this Thesis we shall present a different method, Shades, for achieving atomicity and durability using a copyonwrite policy instead of updatesinplace. We shall also present index structures and the implementation of Shines, a persistent functional programming language, built on top of Shades. Shades includes realtime generational garbage collection. Realtimeness is achieved by collecting only a small part, a generation, of the database at a time. Contrary to previously presented persistent garbage collection algorithms, Shades has no need to maintain metadata (remembered sets) of intrageneration pointers on disk since the metadata can be reconstructed during recovery. This considerably reduces the amount of disk writing. In conjunction with aggressive commit grouping, efficient index structures, a design specialized to a main memory environment, and a carefully crafted implementation of Shines, we have achieved surprisingly high performance, handsomely beating commercial database management systems.