Results 1  10
of
144
GapDefinable Counting Classes
, 1991
"... The function class #P lacks an important closure property: it is not closed under subtraction. To remedy this problem, we introduce the function class GapP as a natural alternative to #P. GapP is the closure of #P under subtraction, and has all the other useful closure properties of #P as well. We s ..."
Abstract

Cited by 122 (13 self)
 Add to MetaCart
The function class #P lacks an important closure property: it is not closed under subtraction. To remedy this problem, we introduce the function class GapP as a natural alternative to #P. GapP is the closure of #P under subtraction, and has all the other useful closure properties of #P as well. We show that most previously studied counting classes, including PP, C=P, and Mod k P, are "gapdefinable," i.e., definable using the values of GapP functions alone. We show that there is a smallest gapdefinable class, SPP, which is still large enough to contain Few. We also show that SPP consists of exactly those languages low for GapP, and thus SPP languages are low for any gapdefinable class. These results unify and improve earlier disparate results of Cai & Hemachandra [7] and Kobler, Schoning, Toda, & Tor'an [15]. We show further that any countable collection of languages is contained in a unique minimum gapdefinable class, which implies that the gapdefinable classes form a lattice un...
Graph Nonisomorphism Has Subexponential Size Proofs Unless The PolynomialTime Hierarchy Collapses
 SIAM Journal on Computing
, 1998
"... We establish hardness versus randomness tradeoffs for a broad class of randomized procedures. In particular, we create efficient nondeterministic simulations of bounded round ArthurMerlin games using a language in exponential time that cannot be decided by polynomial size oracle circuits with acce ..."
Abstract

Cited by 108 (6 self)
 Add to MetaCart
We establish hardness versus randomness tradeoffs for a broad class of randomized procedures. In particular, we create efficient nondeterministic simulations of bounded round ArthurMerlin games using a language in exponential time that cannot be decided by polynomial size oracle circuits with access to satisfiability. We show that every language with a bounded round ArthurMerlin game has subexponential size membership proofs for infinitely many input lengths unless exponential time coincides with the third level of the polynomialtime hierarchy (and hence the polynomialtime hierarchy collapses). This provides the first strong evidence that graph nonisomorphism has subexponential size proofs. We set up a general framework for derandomization which encompasses more than the traditional model of randomized computation. For a randomized procedure to fit within this framework, we only require that for any fixed input the complexity of checking whether the procedure succeeds on a given ...
PP is Closed Under Intersection
 Journal of Computer and System Sciences
, 1991
"... In his seminal paper on probabilistic Turing machines, Gill [13] asked whether the class PP is closed under intersection and union. We give a positive answer to this question. We also show that PP is closed under a variety of polynomialtime truthtable reductions. Consequences in complexity theory ..."
Abstract

Cited by 89 (9 self)
 Add to MetaCart
In his seminal paper on probabilistic Turing machines, Gill [13] asked whether the class PP is closed under intersection and union. We give a positive answer to this question. We also show that PP is closed under a variety of polynomialtime truthtable reductions. Consequences in complexity theory include the definite collapse and (assuming P<F NaN> 6= PP) separation of certain query hierarchies over PP. Similar techniques allow us to combine several threshold gates into a single threshold gate. Consequences in the study of circuits include the simulation of circuits with a small number of threshold gates by circuits having only a single threshold gate at the root (perceptrons), and a lower bound on the number of threshold gates needed to compute the parity function. 1. Introduction The class PP was defined in 1972 by John Gill [13, 14] and independently by Janos Simon [26] in 1974. PP is the class of languages accepted by a polynomialtime bounded nondeterministic Turing machine t...
The Computational Complexity of Probabilistic Planning
 Journal of Artificial Intelligence Research
, 1998
"... We examine the computational complexity of testing and finding small plans in probabilistic planning domains with both flat and propositional representations. The complexity of plan evaluation and existence varies with the plan type sought; we examine totally ordered plans, acyclic plans, and loopin ..."
Abstract

Cited by 77 (5 self)
 Add to MetaCart
We examine the computational complexity of testing and finding small plans in probabilistic planning domains with both flat and propositional representations. The complexity of plan evaluation and existence varies with the plan type sought; we examine totally ordered plans, acyclic plans, and looping plans, and partially ordered plans under three natural definitions of plan value. We show that problems of interest are complete for a variety of complexity classes: PL, P, NP, coNP, PP, NP PP, coNP PP , and PSPACE. In the process of proving that certain planning problems are complete for NP PP , we introduce a new basic NP PP complete problem, EMajsat, which generalizes the standard Boolean satisfiability problem to computations involving probabilistic quantities; our results suggest that the development of good heuristics for EMajsat could be important for the creation of efficient algorithms for a wide variety of problems.
Some Connections between Bounded Query Classes and NonUniform Complexity
 In Proceedings of the 5th Structure in Complexity Theory Conference
, 1990
"... This paper is dedicated to the memory of Ronald V. Book, 19371997. ..."
Abstract

Cited by 71 (23 self)
 Add to MetaCart
This paper is dedicated to the memory of Ronald V. Book, 19371997.
The Polynomial Method in Circuit Complexity
 In Proceedings of the 8th IEEE Structure in Complexity Theory Conference
, 1993
"... The representation of functions as lowdegree polynomials over various rings has provided many insights in the theory of smalldepth circuits. We survey some of the closure properties, upper bounds, and lower bounds obtained via this approach. 1. Introduction There is a long history of using polyno ..."
Abstract

Cited by 70 (4 self)
 Add to MetaCart
The representation of functions as lowdegree polynomials over various rings has provided many insights in the theory of smalldepth circuits. We survey some of the closure properties, upper bounds, and lower bounds obtained via this approach. 1. Introduction There is a long history of using polynomials in order to prove complexity bounds. Minsky and Papert [39] used polynomials to prove early lower bounds on the order of perceptrons. Razborov [46] and Smolensky [49] used them to prove lower bounds on the size of ANDOR circuits. Other lower bounds via polynomials are due to [50, 4, 10, 51, 9, 55]. Paturi and Saks [44] discovered that rational functions could be used for lower bounds on the size of threshold circuits. Toda [53] used polynomials to prove upper bounds on the power of the polynomial hierarchy. This led to a series of upper bounds on the power of the polynomial hierarchy [54, 52], AC 0 [2, 3, 52, 19], and ACC [58, 20, 30, 37], and related classes [21, 42]. Beigel and Gi...
Combining component caching and clause learning for effective model counting
 in Seventh International Conference on Theory and Applications of Satisfiability Testing
, 2004
"... ..."
Pseudorandomness and averagecase complexity via uniform reductions
 In Proceedings of the 17th Annual IEEE Conference on Computational Complexity
, 2002
"... Abstract. Impagliazzo and Wigderson (36th FOCS, 1998) gave the first construction of pseudorandom generators from a uniform complexity assumption on EXP (namely EXP � = BPP). Unlike results in the nonuniform setting, their result does not provide a continuous tradeoff between worstcase hardness an ..."
Abstract

Cited by 54 (9 self)
 Add to MetaCart
Abstract. Impagliazzo and Wigderson (36th FOCS, 1998) gave the first construction of pseudorandom generators from a uniform complexity assumption on EXP (namely EXP � = BPP). Unlike results in the nonuniform setting, their result does not provide a continuous tradeoff between worstcase hardness and pseudorandomness, nor does it explicitly establish an averagecase hardness result. In this paper: ◦ We obtain an optimal worstcase to averagecase connection for EXP: if EXP � ⊆ BPTIME(t(n)), then EXP has problems that cannot be solved on a fraction 1/2 + 1/t ′ (n) of the inputs by BPTIME(t ′ (n)) algorithms, for t ′ = t Ω(1). ◦ We exhibit a PSPACEcomplete selfcorrectible and downward selfreducible problem. This slightly simplifies and strengthens the proof of Impagliazzo and Wigderson, which used a #Pcomplete problem with these properties. ◦ We argue that the results of Impagliazzo and Wigderson, and the ones in this paper, cannot be proved via “blackbox ” uniform reductions.
On the complexity of numerical analysis
 IN PROC. 21ST ANN. IEEE CONF. ON COMPUTATIONAL COMPLEXITY (CCC ’06
, 2006
"... We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis: • The BlumShubSmale model of computation over the reals. • A problem we call the “Generic Task of Numerical Computation, ” which captures an aspect of doing numerical computation ..."
Abstract

Cited by 48 (7 self)
 Add to MetaCart
We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis: • The BlumShubSmale model of computation over the reals. • A problem we call the “Generic Task of Numerical Computation, ” which captures an aspect of doing numerical computation in floating point, similar to the “long exponent model ” that has been studied in the numerical computing community. We show that both of these approaches hinge on the question of understanding the complexity of the following problem, which we call PosSLP: Given a divisionfree straightline program producing an integer N, decide whether N> 0. • In the BlumShubSmale model, polynomial time computation over the reals (on discrete inputs) is polynomialtime equivalent to PosSLP, when there are only algebraic constants. We conjecture that using transcendental constants provides no additional power, beyond nonuniform reductions to PosSLP, and we present some preliminary results supporting this conjecture. • The Generic Task of Numerical Computation is also polynomialtime equivalent to PosSLP. We prove that PosSLP lies in the counting hierarchy. Combining this with work of Tiwari, we obtain that the Euclidean Traveling Salesman Problem lies in the counting hierarchy – the previous best upper bound for this important problem (in terms of classical complexity classes) being PSPACE. In the course of developing the context for our results on arithmetic circuits, we present some new observations on the complexity of ACIT: the Arithmetic Circuit Identity Testing problem. In particular, we show that if n! is not ultimately easy, then ACIT has subexponential complexity.
On Pseudorandomness and ResourceBounded Measure
 Theoretical Computer Science
, 1997
"... In this paper we extend a key result of Nisan and Wigderson [17] to the nondeterministic setting: for all ff ? 0 we show that if there is a language in E = DTIME(2 O(n) ) that is hard to approximate by nondeterministic circuits of size 2 ffn , then there is a pseudorandom generator that can be u ..."
Abstract

Cited by 42 (3 self)
 Add to MetaCart
In this paper we extend a key result of Nisan and Wigderson [17] to the nondeterministic setting: for all ff ? 0 we show that if there is a language in E = DTIME(2 O(n) ) that is hard to approximate by nondeterministic circuits of size 2 ffn , then there is a pseudorandom generator that can be used to derandomize BP \Delta NP (in symbols, BP \Delta NP = NP). By applying this extension we are able to answer some open questions in [14] regarding the derandomization of the classes BP \Delta \Sigma P k and BP \Delta \Theta P k under plausible measure theoretic assumptions. As a consequence, if \Theta P 2 does not have pmeasure 0, then AM " coAM is low for \Theta P 2 . Thus, in this case, the graph isomorphism problem is low for \Theta P 2 . By using the NisanWigderson design of a pseudorandom generator we unconditionally show the inclusion MA ` ZPP NP and that MA " coMA is low for ZPP NP . 1 Introduction In recent years, following the development of resourcebounded meas...