Results 1 
6 of
6
The Power of Convex Relaxation: NearOptimal Matrix Completion
, 2009
"... This paper is concerned with the problem of recovering an unknown matrix from a small fraction of its entries. This is known as the matrix completion problem, and comes up in a great number of applications, including the famous Netflix Prize and other similar questions in collaborative filtering. In ..."
Abstract

Cited by 131 (5 self)
 Add to MetaCart
This paper is concerned with the problem of recovering an unknown matrix from a small fraction of its entries. This is known as the matrix completion problem, and comes up in a great number of applications, including the famous Netflix Prize and other similar questions in collaborative filtering. In general, accurate recovery of a matrix from a small number of entries is impossible; but the knowledge that the unknown matrix has low rank radically changes this premise, making the search for solutions meaningful. This paper presents optimality results quantifying the minimum number of entries needed to recover a matrix of rank r exactly by any method whatsoever (the information theoretic limit). More importantly, the paper shows that, under certain incoherence assumptions on the singular vectors of the matrix, recovery is possible by solving a convenient convex program as soon as the number of entries is on the order of the information theoretic limit (up to logarithmic factors). This convex program simply finds, among all matrices consistent with the observed entries, that with minimum nuclear norm. As an example, we show that on the order of nr log(n) samples are needed to recover a random n × n matrix of rank r by any method, and to be sure, nuclear norm minimization succeeds as soon as the number of entries is of the form nrpolylog(n).
Matrix Completion with Noise
"... On the heels of compressed sensing, a remarkable new field has very recently emerged. This field addresses a broad range of problems of significant practical interest, namely, the recovery of a data matrix from what appears to be incomplete, and perhaps even corrupted, information. In its simplest ..."
Abstract

Cited by 74 (4 self)
 Add to MetaCart
On the heels of compressed sensing, a remarkable new field has very recently emerged. This field addresses a broad range of problems of significant practical interest, namely, the recovery of a data matrix from what appears to be incomplete, and perhaps even corrupted, information. In its simplest form, the problem is to recover a matrix from a small sample of its entries, and comes up in many areas of science and engineering including collaborative filtering, machine learning, control, remote sensing, and computer vision to name a few. This paper surveys the novel literature on matrix completion, which shows that under some suitable conditions, one can recover an unknown lowrank matrix from a nearly minimal set of entries by solving a simple convex optimization problem, namely, nuclearnorm minimization subject to data constraints. Further, this paper introduces novel results showing that matrix completion is provably accurate even when the few observed entries are corrupted with a small amount of noise. A typical result is that one can recover an unknown n × n matrix of low rank r from just about nr log 2 n noisy samples with an error which is proportional to the noise level. We present numerical results which complement our quantitative analysis and show that, in practice, nuclear norm minimization accurately fills in the many missing entries of large lowrank matrices from just a few noisy samples. Some analogies between matrix completion and compressed sensing are discussed throughout.
Graphical Models Concepts in Compressed Sensing
"... This paper surveys recent work in applying ideas from graphical models and message passing algorithms to solve large scale regularized regression problems. In particular, the focus is on compressed sensing reconstruction via ℓ1 penalized leastsquares (known as LASSO or BPDN). We discuss how to deri ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
This paper surveys recent work in applying ideas from graphical models and message passing algorithms to solve large scale regularized regression problems. In particular, the focus is on compressed sensing reconstruction via ℓ1 penalized leastsquares (known as LASSO or BPDN). We discuss how to derive fast approximate message passing algorithms to solve this problem. Surprisingly, the analysis of such algorithms allows to prove exact highdimensional limit results for the LASSO risk. This paper will appear as a chapter in a book on ‘Compressed Sensing ’ edited by Yonina Eldar and Gitta Kutynok. 1
EUCLIDEAN DISTANCE GEOMETRY AND APPLICATIONS
"... Abstract. Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the inputdataconsistsofanincompleteset of distances, and the output is a set of points in Euclidean space that realizes the given distances. We surv ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the inputdataconsistsofanincompleteset of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of its most important applications, including molecular conformation, localization of sensor networks and statics. Key words. Matrix completion, barandjoint framework, graph rigidity, inverse problem, protein conformation, sensor network.
Global registration of multiple point clouds using semidefinite programming. arXiv:1306.5226 [cs.CV
, 2013
"... ABSTRACT. Consider N points in R d and M local coordinate systems that are related through unknown rigid transforms. For each point we are given (possibly noisy) measurements of its local coordinates in some of the coordinate systems. Alternatively, for each coordinate system, we observe the coordin ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
ABSTRACT. Consider N points in R d and M local coordinate systems that are related through unknown rigid transforms. For each point we are given (possibly noisy) measurements of its local coordinates in some of the coordinate systems. Alternatively, for each coordinate system, we observe the coordinates of a subset of the points. The problem of estimating the global coordinates of the N points (up to a rigid transform) from such measurements comes up in distributed approaches to molecular conformation and sensor network localization, and also in computer vision and graphics. The leastsquares formulation, though nonconvex, has a well known closedform solution for the case M = 2 (based on the singular value decomposition). However, no closed form solution is known for M ≥ 3. In this paper, we propose a semidefinite relaxation of the leastsquares formulation, and prove conditions for exact and stable recovery for both this relaxation and for a previously proposed spectral relaxation. In particular, using results from rigidity theory and the theory of semidefinite programming, we prove that the semidefinite relaxation can guarantee recovery under more adversarial measurements compared to the spectral counterpart. We perform numerical experiments on simulated data to confirm the theoretical findings. We empirically demonstrate that (a) unlike the spectral relaxation, the relaxation gap is mostly zero for the semidefinite program (i.e., we are able to solve the original nonconvex problem) up to a certain noise threshold, and (b) the semidefinite program performs significantly better than spectral and manifoldoptimization methods, particularly at large noise levels.
Positive Semidefinite Matrix Completion, Universal Rigidity and the Strong Arnold Property
, 2013
"... This paper addresses the following three topics: positive semidefinite (psd) matrix completions, universal rigidity of frameworks, and the Strong Arnold Property (SAP). We show some strong connections among these topics, using semidefinite programming as unifying theme. Our main contribution is a su ..."
Abstract
 Add to MetaCart
This paper addresses the following three topics: positive semidefinite (psd) matrix completions, universal rigidity of frameworks, and the Strong Arnold Property (SAP). We show some strong connections among these topics, using semidefinite programming as unifying theme. Our main contribution is a sufficient condition for constructing partial psd matrices which admit a unique completion to a full psd matrix. Such partial matrices are an essential tool in the study of the Gram dimension gd(G) of a graph G, a recently studied graph parameter related to the low psd matrix completion problem. Additionally, we derive an elementary proof of Connelly’s sufficient condition for universal rigidity of tensegrity frameworks and we investigate the links between these two sufficient conditions. We also give a geometric characterization of psd matrices satisfying the Strong Arnold Property in terms of nondegeneracy of an associated semidefinite program, which we use to establish some links between the Gram dimension gd(·) and the Colin de Verdière type graph parameter ν =(·).