Results 1  10
of
28
Optimal Ordered Problem Solver
, 2002
"... We present a novel, general, optimally fast, incremental way of searching for a universal algorithm that solves each task in a sequence of tasks. The Optimal Ordered Problem Solver (OOPS) continually organizes and exploits previously found solutions to earlier tasks, eciently searching not only the ..."
Abstract

Cited by 62 (20 self)
 Add to MetaCart
We present a novel, general, optimally fast, incremental way of searching for a universal algorithm that solves each task in a sequence of tasks. The Optimal Ordered Problem Solver (OOPS) continually organizes and exploits previously found solutions to earlier tasks, eciently searching not only the space of domainspecific algorithms, but also the space of search algorithms. Essentially we extend the principles of optimal nonincremental universal search to build an incremental universal learner that is able to improve itself through experience.
The Speed Prior: A New Simplicity Measure Yielding NearOptimal Computable Predictions
 Proceedings of the 15th Annual Conference on Computational Learning Theory (COLT 2002), Lecture Notes in Artificial Intelligence
, 2002
"... Solomonoff's optimal but noncomputable method for inductive inference assumes that observation sequences x are drawn from an recursive prior distribution p(x). Instead of using the unknown p() he predicts using the celebrated universal enumerable prior M() which for all exceeds any recursive p() ..."
Abstract

Cited by 51 (20 self)
 Add to MetaCart
Solomonoff's optimal but noncomputable method for inductive inference assumes that observation sequences x are drawn from an recursive prior distribution p(x). Instead of using the unknown p() he predicts using the celebrated universal enumerable prior M() which for all exceeds any recursive p(), save for a constant factor independent of x. The simplicity measure M() naturally implements "Occam's razor " and is closely related to the Kolmogorov complexity of . However, M assigns high probability to certain data that are extremely hard to compute. This does not match our intuitive notion of simplicity. Here we suggest a more plausible measure derived from the fastest way of computing data. In absence of contrarian evidence, we assume that the physical world is generated by a computational process, and that any possibly infinite sequence of observations is therefore computable in the limit (this assumption is more radical and stronger than Solomonoff's).
Gödel machines: Fully selfreferential optimal universal selfimprovers
 Goertzel and C. Pennachin, Artificial General Intelligence
, 2006
"... Summary. We present the first class of mathematically rigorous, general, fully selfreferential, selfimproving, optimally efficient problem solvers. Inspired by Kurt Gödel’s celebrated selfreferential formulas (1931), such a problem solver rewrites any part of its own code as soon as it has found ..."
Abstract

Cited by 25 (12 self)
 Add to MetaCart
Summary. We present the first class of mathematically rigorous, general, fully selfreferential, selfimproving, optimally efficient problem solvers. Inspired by Kurt Gödel’s celebrated selfreferential formulas (1931), such a problem solver rewrites any part of its own code as soon as it has found a proof that the rewrite is useful, where the problemdependent utility function and the hardware and the entire initial code are described by axioms encoded in an initial proof searcher which is also part of the initial code. The searcher systematically and efficiently tests computable proof techniques (programs whose outputs are proofs) until it finds a provably useful, computable selfrewrite. We show that such a selfrewrite is globally optimal—no local maxima!—since the code first had to prove that it is not useful to continue the proof search for alternative selfrewrites. Unlike previous nonselfreferential methods based on hardwired proof searchers, ours not only boasts an optimal order of complexity but can optimally reduce any slowdowns hidden by the O()notation, provided the utility of such speedups is provable at all. 1
Universal Algorithmic Intelligence: A mathematical topdown approach
 Artificial General Intelligence
, 2005
"... Artificial intelligence; algorithmic probability; sequential decision theory; rational ..."
Abstract

Cited by 22 (6 self)
 Add to MetaCart
Artificial intelligence; algorithmic probability; sequential decision theory; rational
Gödel Machines: SelfReferential Universal Problem Solvers Making Provably Optimal SelfImprovements
, 2003
"... An old dream of computer scientists is to build an optimally ecient universal problem solver. We show how to solve arbitrary computational problems in an optimal fashion inspired by Kurt Gödel's celebrated selfreferential formulas (1931). Our Godel machine's initial software includes an axiomat ..."
Abstract

Cited by 16 (7 self)
 Add to MetaCart
An old dream of computer scientists is to build an optimally ecient universal problem solver. We show how to solve arbitrary computational problems in an optimal fashion inspired by Kurt Gödel's celebrated selfreferential formulas (1931). Our Godel machine's initial software includes an axiomatic description of: the Godel machine's hardware, the problemspeci c utility function (such as the expected future reward of a robot), known aspects of the environment, costs of actions and computations, and the initial software itself (this is possible without introducing circularity). It also includes a typically suboptimal initial problemsolving policy and an asymptotically optimal proof searcher searching the space of computable proof techniquesthat is, programs whose outputs are proofs. Unlike previous approaches, the selfreferential Gödel machine will rewrite any part of its software, including axioms and proof searcher, as soon as it has found a proof that this will improve its future performance, given its typically limited computational resources. We show that selfrewrites are globally optimalno local minima!since provably none of all the alternative rewrites and proofs (those that could be found by continuing the proof search) are worth waiting for.
The New AI: General & Sound & Relevant for Physics
, 2003
"... Most traditional artificial intelligence (AI) systems of the past 50 years are either very limited, or based on heuristics, or both. The new millennium, however, has brought substantial progress in the field of theoretically optimal and practically feasible algorithms for prediction, search, inducti ..."
Abstract

Cited by 15 (9 self)
 Add to MetaCart
Most traditional artificial intelligence (AI) systems of the past 50 years are either very limited, or based on heuristics, or both. The new millennium, however, has brought substantial progress in the field of theoretically optimal and practically feasible algorithms for prediction, search, inductive inference based on Occam's razor, problem solving, decision making, and reinforcement learning in environments of a very general type. Since inductive inference is at the heart of all inductive sciences, some of the results are relevant not only for AI and computer science but also for physics, provoking nontraditional predictions based on Zuse's thesis of the computergenerated universe.
BiasOptimal Incremental Problem Solving
 In Advances in Neural Information Processing Systems 15
, 2003
"... Given is a problem sequence and a probability distribution (the bias) on programs computing solution candidates. We present an optimally fast way of incrementally solving each task in the sequence. Bias shifts are computed by program prefixes that modify the distribution on their suffixes by reusing ..."
Abstract

Cited by 14 (8 self)
 Add to MetaCart
Given is a problem sequence and a probability distribution (the bias) on programs computing solution candidates. We present an optimally fast way of incrementally solving each task in the sequence. Bias shifts are computed by program prefixes that modify the distribution on their suffixes by reusing successful code for previous tasks (stored in nonmodifiable memory). No tested program gets more runtime than its probability times the total search time. In illustrative experiments, ours becomes the first general system to learn a universal solver for arbitrary disk Towers of Hanoi tasks (minimal solution size 2^n  1). It demonstrates the advantages of incremental learning by profiting from previously solved, simpler tasks involving samples of a simple context free language.
New millennium AI and the convergence of history
 Challenges to Computational Intelligence
, 2007
"... Artificial Intelligence (AI) has recently become a real formal science: the new millennium brought the first mathematically sound, asymptotically optimal, universal problem solvers, providing a new, rigorous foundation for the previously largely heuristic field of General AI and embedded agents. At ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
Artificial Intelligence (AI) has recently become a real formal science: the new millennium brought the first mathematically sound, asymptotically optimal, universal problem solvers, providing a new, rigorous foundation for the previously largely heuristic field of General AI and embedded agents. At the same time there has been rapid progress in practical methods for learning true sequenceprocessing programs, as opposed to traditional methods limited to stationary pattern association. Here we will briefly review some of the new results, and speculate about future developments, pointing out that the time intervals between the most notable events in over 40,000 years or 2 9 lifetimes of human history have sped up exponentially, apparently converging to zero within the next few decades. Or is this impression just a byproduct of the way humans allocate memory space to past events? 1