Results 1  10
of
29
Maude: Specification and Programming in Rewriting Logic
, 2001
"... Maude is a highlevel language and a highperformance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and ..."
Abstract

Cited by 170 (62 self)
 Add to MetaCart
Maude is a highlevel language and a highperformance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and theories. The underlying equational logic chosen for Maude is membership equational logic, that has sorts, subsorts, operator overloading, and partiality definable by membership and equality conditions. Rewriting logic is reflective, in the sense of being able to express its own metalevel at the object level. Reflection is systematically exploited in Maude endowing the language with powerful metaprogramming capabilities, including both userdefinable module operations and declarative strategies to guide the deduction process. This paper explains and illustrates with examples the main concepts of Maude's language design, including its underlying logic, functional, system and objectoriented modules, as well as parameterized modules, theories, and views. We also explain how Maude supports reflection, metaprogramming and internal strategies. The paper outlines the principles underlying the Maude system implementation, including its semicompilation techniques. We conclude with some remarks about applications, work on a formal environment for Maude, and a mobile language extension of Maude.
Principles of Maude
, 1996
"... This paper introduces the basic concepts of the rewriting logic language Maude and discusses its implementation. Maude is a widespectrum language supporting formal specification, rapid prototyping, and parallel programming. Maude's rewriting logic paradigm includes the functional and objectoriente ..."
Abstract

Cited by 123 (28 self)
 Add to MetaCart
This paper introduces the basic concepts of the rewriting logic language Maude and discusses its implementation. Maude is a widespectrum language supporting formal specification, rapid prototyping, and parallel programming. Maude's rewriting logic paradigm includes the functional and objectoriented paradigms as sublanguages. The fact that rewriting logic is reflective leads to novel metaprogramming capabilities that can greatly increase software reusability and adaptability. Control of the rewriting computation is achieved through internal strategy languages defined inside the logic. Maude's rewrite engine is designed with the explicit goal of being highly extensible and of supporting rapid prototyping and formal methods applications, but its semicompilation techniques allow it to meet those goals with good performance. 1 Introduction Maude is a logical language based on rewriting logic [16,23,19]. It is therefore related to other rewriting logic languages such as Cafe [10], ELAN [...
Reasoning Theories  Towards an Architecture for Open Mechanized Reasoning Systems
, 1994
"... : Our ultimate goal is to provide a framework and a methodology which will allow users, and not only system developers, to construct complex reasoning systems by composing existing modules, or to add new modules to existing systems, in a "plug and play" manner. These modules and systems might be ..."
Abstract

Cited by 47 (11 self)
 Add to MetaCart
: Our ultimate goal is to provide a framework and a methodology which will allow users, and not only system developers, to construct complex reasoning systems by composing existing modules, or to add new modules to existing systems, in a "plug and play" manner. These modules and systems might be based on different logics; have different domain models; use different vocabularies and data structures; use different reasoning strategies; and have different interaction capabilities. This paper makes two main contributions towards our goal. First, it proposes a general architecture for a class of reasoning systems called Open Mechanized Reasoning Systems (OMRSs). An OMRS has three components: a reasoning theory component which is the counterpart of the logical notion of formal system, a control component which consists of a set of inference strategies, and an interaction component which provides an OMRS with the capability of interacting with other systems, including OMRSs and hum...
An ImplementationOriented Semantics for Module Composition
, 1997
"... This paper describes an approach to module composition by executing "module expressions" to build systems out of component modules; the paper also gives a novel semantics intended to aid implementers. The semantics is based on set theoretic notions of tuple set, partial signature, and institution, t ..."
Abstract

Cited by 32 (14 self)
 Add to MetaCart
This paper describes an approach to module composition by executing "module expressions" to build systems out of component modules; the paper also gives a novel semantics intended to aid implementers. The semantics is based on set theoretic notions of tuple set, partial signature, and institution, thus avoiding more difficult mathematics theory. Language features include information hiding, both vertical and horizontal composition, and views for binding modules to interfaces. Vertical composition refers to the hierarchical structuring of a system into layers, while horizontal composition refers to the structure of a given layer. Modules may involve information hiding, and views may involve behavioral satisfaction of a theory by a module. Several "Laws of Software Composition" are given, which show how the various module composition operations relate. Taken together, this gives foundations for an algebraic approach to software engineering. 1.1 Introduction The approach to module compos...
Formalising Ontologies and Their Relations
 In Proceedings of DEXA’99
, 1999
"... . Ontologies allow the abstract conceptualisation of domains, but a given domain can be conceptualised through many different ontologies, which can be problematic when ontologies are used to support knowledge sharing. We present a formal account of ontologies that is intended to support knowledg ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
. Ontologies allow the abstract conceptualisation of domains, but a given domain can be conceptualised through many different ontologies, which can be problematic when ontologies are used to support knowledge sharing. We present a formal account of ontologies that is intended to support knowledge sharing through precise characterisations of relationships such as compatibility and refinement. We take an algebraic approach, in which ontologies are presented as logical theories. This allows us to characterise relations between ontologies as relations between their classes of models. A major result is cocompleteness of specifications, which supports merging of ontologies across shared subontologies. 1 Introduction Over the last decade ontologies  best characterised as explicit specifications of a conceptualisation of a domain [17]  have become increasingly important in the design and development of knowledge based systems, and for knowledge representations generally. They...
Proof of Correctness of Object Representations
"... This paper presents an algebraic account of implementation that is applicable to the object paradigm. The key to its applicability is the notion of state: objects have local states that are observable only through their outputs. That is, objects may be viewed as abstract machines with hidden local s ..."
Abstract

Cited by 27 (14 self)
 Add to MetaCart
This paper presents an algebraic account of implementation that is applicable to the object paradigm. The key to its applicability is the notion of state: objects have local states that are observable only through their outputs. That is, objects may be viewed as abstract machines with hidden local state (as in [9]). Consequently, a correct implementation need only have the required visible behaviour. We use hidden order sorted algebra to formalise the object paradigm [4, 5, 8]. Advantages of an algebraic approach include a high level of intellectual rigour, a large body of supporting mathematics, and simple, efficient proofs using only equational logic. A wide variety of extensions to equational logic have been developed to treat various programming features, while preserving its essential simplicity. For example, order sorted equational logic uses a notion of subsort to treat computations that may raise exceptions or fail to terminate. Hidden sorted logic extends standard equational logic to capture an important distinction between immutable data types, such as booleans and integers, and mutable objects, such as program variables and database entities. The terms abstract data types and abstract object classes refer to these two kinds of entity. The former represent `visible' data values; the latter represent data stored in a hidden state. In hidden sorted equational logic, an equation of hidden sort need not be satisfied in the usual sense, but only up to observability, in that only its visible consequences need hold. Thus, hidden sorted logic allows greater freedom in implementations. The simplicity of the underlying logic is important, because we want a tractable
Categorybased Semantics for Equational and Constraint Logic Programming
, 1994
"... This thesis proposes a general framework for equational logic programming, called categorybased equational logic by placing the general principles underlying the design of the programming language Eqlog and formulated by Goguen and Meseguer into an abstract form. This framework generalises equation ..."
Abstract

Cited by 24 (10 self)
 Add to MetaCart
This thesis proposes a general framework for equational logic programming, called categorybased equational logic by placing the general principles underlying the design of the programming language Eqlog and formulated by Goguen and Meseguer into an abstract form. This framework generalises equational deduction to an arbitrary category satisfying certain natural conditions; completeness is proved under a hypothesis of quantifier projectivity, using a semantic treatment that regards quantifiers as models rather than variables, and regards valuations as model morphisms rather than functions. This is used as a basis for a model theoretic categorybased approach to a paramodulationbased operational semantics for equational logic programming languages. Categorybased equational logic in conjunction with the theory of institutions is used to give mathematical foundations for modularisation in equational logic programming. We study the soundness and completeness problem for module imports i...
Parameterized Programming and Software Architecture
 IN PROCEEDINGS, REUSE'96
, 1996
"... This paper discusses an approach to software architecture based on concepts from parameterized programming, particularly its language of "module expressions." A module expression describes the architecture of a system as an interconnection of component modules, and executing the expression actually ..."
Abstract

Cited by 19 (3 self)
 Add to MetaCart
This paper discusses an approach to software architecture based on concepts from parameterized programming, particularly its language of "module expressions." A module expression describes the architecture of a system as an interconnection of component modules, and executing the expression actually builds the system. Language features include: modules parameterized by theories, which declare interfaces; a number of module composition operations; views for binding modules to interfaces; and both vertical and horizontal composition. Modules may involve information hiding, theories may declare semantic restrictions with axioms, and views assert behavioral satisfaction of axioms by a module. Some "laws of software composition" are given, showing how various module composition operations are related. We also show how a variety of architectural styles can be supported, and how this approach can be extended to support evolution and traceability. All this is intended to ease the development of large systems, and in particular, to make reuse more effective in practice.
An Extensible Module Algebra For Maude
, 1998
"... The fact that rewriting logic and Maude are reflective, so that rewriting logic specifications can be manipulated as terms at the metalevel, opens up the possibility of defining an algebra of module composition and transformation operations within the logic. This makes such a module algebra easily m ..."
Abstract

Cited by 19 (10 self)
 Add to MetaCart
The fact that rewriting logic and Maude are reflective, so that rewriting logic specifications can be manipulated as terms at the metalevel, opens up the possibility of defining an algebra of module composition and transformation operations within the logic. This makes such a module algebra easily modifiable and extensible, enables the implementation of language extensions within Maude, and allows formal reasoning about the module operations themselves. In this paper we discuss in detail the Maude implementation of a specific choice of operations for a module algebra of this type, supporting module operations in the Clear/OBJ tradition as well as the transformation of objectoriented modules into system modules. 1
Social and Semiotic Analyses for Theorem Prover User Interface Design
 Formal Aspects of Computing
, 1999
"... We describe an approach to user interface design based on ideas from social science, narratology (the theory of stories), cognitive science, and a new area called algebraic semiotics. Social analysis helps to identify certain roles for users with their associated requirements, and suggests ways to m ..."
Abstract

Cited by 19 (11 self)
 Add to MetaCart
We describe an approach to user interface design based on ideas from social science, narratology (the theory of stories), cognitive science, and a new area called algebraic semiotics. Social analysis helps to identify certain roles for users with their associated requirements, and suggests ways to make proofs more understandable, while algebraic semiotics, which combines semiotics with algebraic specification, provides rigorous theories for interface functionality and for a certain technical notion of quality. We apply these techniques to designing user interfaces for a distributed cooperative theorem proving system, whose main component is a website generation and proof assistance tool called Kumo. This interface integrates formal proving, proof browsing, animation, informal explanation, and online background tutorials, drawing on a richer than usual notion of proof. Experience with using the interface is reported, and some conclusions are drawn.