Results 1  10
of
29
Term Rewriting Systems
, 1992
"... Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstract Re ..."
Abstract

Cited by 567 (16 self)
 Add to MetaCart
Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstract Reduction Systems
Maude: Specification and Programming in Rewriting Logic
, 2001
"... Maude is a highlevel language and a highperformance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and ..."
Abstract

Cited by 170 (62 self)
 Add to MetaCart
Maude is a highlevel language and a highperformance system supporting executable specification and declarative programming in rewriting logic. Since rewriting logic contains equational logic, Maude also supports equational specification and programming in its sublanguage of functional modules and theories. The underlying equational logic chosen for Maude is membership equational logic, that has sorts, subsorts, operator overloading, and partiality definable by membership and equality conditions. Rewriting logic is reflective, in the sense of being able to express its own metalevel at the object level. Reflection is systematically exploited in Maude endowing the language with powerful metaprogramming capabilities, including both userdefinable module operations and declarative strategies to guide the deduction process. This paper explains and illustrates with examples the main concepts of Maude's language design, including its underlying logic, functional, system and objectoriented modules, as well as parameterized modules, theories, and views. We also explain how Maude supports reflection, metaprogramming and internal strategies. The paper outlines the principles underlying the Maude system implementation, including its semicompilation techniques. We conclude with some remarks about applications, work on a formal environment for Maude, and a mobile language extension of Maude.
Rewriting Logic as a Logical and Semantic Framework
, 1993
"... Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are und ..."
Abstract

Cited by 147 (52 self)
 Add to MetaCart
Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are understood as mappings L ! F that translate one logic into the other in a conservative way. The ease with which such maps can be defined for a number of quite different logics of interest, including equational logic, Horn logic with equality, linear logic, logics with quantifiers, and any sequent calculus presentation of a logic for a very general notion of "sequent," is discussed in detail. Using the fact that rewriting logic is reflective, it is often possible to reify inside rewriting logic itself a representation map L ! RWLogic for the finitely presentable theories of L. Such a reification takes the form of a map between the abstract data types representing the finitary theories of...
Principles of Maude
, 1996
"... This paper introduces the basic concepts of the rewriting logic language Maude and discusses its implementation. Maude is a widespectrum language supporting formal specification, rapid prototyping, and parallel programming. Maude's rewriting logic paradigm includes the functional and objectoriente ..."
Abstract

Cited by 123 (28 self)
 Add to MetaCart
This paper introduces the basic concepts of the rewriting logic language Maude and discusses its implementation. Maude is a widespectrum language supporting formal specification, rapid prototyping, and parallel programming. Maude's rewriting logic paradigm includes the functional and objectoriented paradigms as sublanguages. The fact that rewriting logic is reflective leads to novel metaprogramming capabilities that can greatly increase software reusability and adaptability. Control of the rewriting computation is achieved through internal strategy languages defined inside the logic. Maude's rewrite engine is designed with the explicit goal of being highly extensible and of supporting rapid prototyping and formal methods applications, but its semicompilation techniques allow it to meet those goals with good performance. 1 Introduction Maude is a logical language based on rewriting logic [16,23,19]. It is therefore related to other rewriting logic languages such as Cafe [10], ELAN [...
Introducing OBJ
, 1993
"... This is an introduction to the philosophy and use of OBJ, emphasizing its operational semantics, with aspects of its history and its logical semantics. Release 2 of OBJ3 is described in detail, with many examples. OBJ is a wide spectrum firstorder functional language that is rigorously based on ..."
Abstract

Cited by 120 (29 self)
 Add to MetaCart
This is an introduction to the philosophy and use of OBJ, emphasizing its operational semantics, with aspects of its history and its logical semantics. Release 2 of OBJ3 is described in detail, with many examples. OBJ is a wide spectrum firstorder functional language that is rigorously based on (order sorted) equational logic and parameterized programming, supporting a declarative style that facilitates verification and allows OBJ to be used as a theorem prover.
Logical Support for Modularisation
 LOGICAL ENVIRONMENTS
, 1993
"... Modularisation is important for managing the complex structures that arise in large theorem proving problems, and in large software and/or hardware development projects. This paper studies some properties of logical systems that support the definition, combination, parameterisation and reuse of ..."
Abstract

Cited by 85 (28 self)
 Add to MetaCart
Modularisation is important for managing the complex structures that arise in large theorem proving problems, and in large software and/or hardware development projects. This paper studies some properties of logical systems that support the definition, combination, parameterisation and reuse of modules. Our results show some new connections among: (1) the preservation of various kinds of conservative extension under pushouts; (2) various distributive laws for information hiding over sums; and (3) (Craig style) interpolation properties. In addition, we study differences between syntactic and semantic formulations of conservative extension properties, and of distributive laws. A model theoretic property that we call exactness plays an important role in some results. This paper explores the interplay between syntax and semantics, and thus lies in the tradition of abstract model theory. We represent logical systems as institutions. An important technical foundation is a new ...
Metalogical Frameworks
, 1992
"... In computer science we speak of implementing a logic; this is done in a programming language, such as Lisp, called here the implementation language. We also reason about the logic, as in understanding how to search for proofs; these arguments are expressed in the metalanguage and conducted in the me ..."
Abstract

Cited by 57 (15 self)
 Add to MetaCart
In computer science we speak of implementing a logic; this is done in a programming language, such as Lisp, called here the implementation language. We also reason about the logic, as in understanding how to search for proofs; these arguments are expressed in the metalanguage and conducted in the metalogic of the object language being implemented. We also reason about the implementation itself, say to know it is correct; this is done in a programming logic. How do all these logics relate? This paper considers that question and more. We show that by taking the view that the metalogic is primary, these other parts are related in standard ways. The metalogic should be suitably rich so that the object logic can be presented as an abstract data type, and it must be suitably computational (or constructive) so that an instance of that type is an implementation. The data type abstractly encodes all that is relevant for metareasoning, i.e., not only the term constructing functions but also the...
Building Equational Proving Tools by Reflection in Rewriting Logic
 In Cafe: An IndustrialStrength Algebraic Formal Method
, 1998
"... This paper explains the design and use of two equational proving tools, namely an inductive theorem prover  to prove theorems about equational specifications with an initial algebra semantics  and a ChurchRosser checkerto check whether such specifications satisfy the ChurchRosser property. ..."
Abstract

Cited by 38 (19 self)
 Add to MetaCart
This paper explains the design and use of two equational proving tools, namely an inductive theorem prover  to prove theorems about equational specifications with an initial algebra semantics  and a ChurchRosser checkerto check whether such specifications satisfy the ChurchRosser property. These tools can be used to prove properties of ordersorted equational specifications in Cafe [11] and of membership equational logic specifications in Maude [7, 6]. The tools have been written entirely in Maude and are in fact executable specifications in rewriting logic of the formal inference systems that they implement.
Research Directions in Rewriting Logic
, 1998
"... Rewriting logic expresses an essential equivalence between logic and computation. System states are in bijective correspondence with formulas, and concurrent computations are in bijective correspondence with proofs. Given this equivalence between computation and logic, a rewriting logic axiom of the ..."
Abstract

Cited by 31 (12 self)
 Add to MetaCart
Rewriting logic expresses an essential equivalence between logic and computation. System states are in bijective correspondence with formulas, and concurrent computations are in bijective correspondence with proofs. Given this equivalence between computation and logic, a rewriting logic axiom of the form t \Gamma! t 0 has two readings. Computationally, it means that a fragment of a system 's state that is an instance of the pattern t can change to the corresponding instance of t 0 concurrently with any other state changes; logically, it just means that we can derive the formula t 0 from the formula t. Rewriting logic is entirely neutral about the structure and properties of the formulas/states t. They are entirely userdefinable as an algebraic data type satisfying certain equational axioms. Because of this ecumenical neutrality, rewriting logic has, from a logical viewpoint, good properties as a logical framework, in which many other logics can be naturally represented. And, computationally, it has also good properties as a semantic framework, in which many different system styles and models of concurrent computation and many different languages can be naturally expressed without any distorting encodings. The goal of this paper is to provide a relatively gentle introduction to rewriting logic, and to paint in broad strokes the main research directions that, since its introduction in 1990, have been pursued by a growing number of researchers in Europe, the US, and Japan. Key theoretical developments, as well as the main current applications of rewriting logic as a logical and semantic framework, and the work on formal reasoning to prove properties of specifications are surveyed.
Equational abstractions
 of LNCS
, 2003
"... Abstract. Abstraction reduces the problem of whether an infinite state system satisfies version. The most common abstractions are quotients of the original system. We present a simple method of defining quotient abstractions by means of equations collapsing the set of states. Our method yields the m ..."
Abstract

Cited by 26 (12 self)
 Add to MetaCart
Abstract. Abstraction reduces the problem of whether an infinite state system satisfies version. The most common abstractions are quotients of the original system. We present a simple method of defining quotient abstractions by means of equations collapsing the set of states. Our method yields the minimal quotient system together with a set of proof obligations that guarantee its executability and can be discharged with tools such as those in the Maude formal environment.