Results 1 
6 of
6
On The Algebraic Models Of Lambda Calculus
 Theoretical Computer Science
, 1997
"... . The variety (equational class) of lambda abstraction algebras was introduced to algebraize the untyped lambda calculus in the same way Boolean algebras algebraize the classical propositional calculus. The equational theory of lambda abstraction algebras is intended as an alternative to combinatory ..."
Abstract

Cited by 20 (11 self)
 Add to MetaCart
. The variety (equational class) of lambda abstraction algebras was introduced to algebraize the untyped lambda calculus in the same way Boolean algebras algebraize the classical propositional calculus. The equational theory of lambda abstraction algebras is intended as an alternative to combinatory logic in this regard since it is a firstorder algebraic description of lambda calculus, which allows to keep the lambda notation and hence all the functional intuitions. In this paper we show that the lattice of the subvarieties of lambda abstraction algebras is isomorphic to the lattice of lambda theories of the lambda calculus; for every variety of lambda abstraction algebras there exists exactly one lambda theory whose term algebra generates the variety. For example, the variety generated by the term algebra of the minimal lambda theory is the variety of all lambda abstraction algebras. This result is applied to obtain a generalization of the genericity lemma of finitary lambda calculus...
A Categorytheoretic characterization of functional completeness
, 1990
"... . Functional languages are based on the notion of application: programs may be applied to data or programs. By application one may define algebraic functions; and a programming language is functionally complete when any algebraic function f(x 1 ,...,x n ) is representable (i.e. there is a constant a ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
. Functional languages are based on the notion of application: programs may be applied to data or programs. By application one may define algebraic functions; and a programming language is functionally complete when any algebraic function f(x 1 ,...,x n ) is representable (i.e. there is a constant a such that f(x 1 ,...,x n ) = (a . x 1 . ... . x n ). Combinatory Logic is the simplest typefree language which is functionally complete. In a sound categorytheoretic framework the constant a above may be considered as an "abstract gödelnumber" for f, when gödelnumberings are generalized to "principal morphisms", in suitable categories. By this, models of Combinatory Logic are categorically characterized and their relation is given to lambdacalculus models within Cartesian Closed Categories. Finally, the partial recursive functionals in any finite higher type are shown to yield models of Combinatory Logic. ________________ (+) Theoretical Computer Science, 70 (2), 1990, pp.193211. A p...
Formalising formulasastypesasobjects
 Types for Proofs and Programs
, 2000
"... Abstract. We describe a formalisation of the CurryHowardLawvere correspondence between the natural deduction system for minimal logic, the typed lambda calculus and Cartesian closed categories. We formalise the type of natural deduction proof trees as a family of sets Γ ⊢ A indexed by the current ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. We describe a formalisation of the CurryHowardLawvere correspondence between the natural deduction system for minimal logic, the typed lambda calculus and Cartesian closed categories. We formalise the type of natural deduction proof trees as a family of sets Γ ⊢ A indexed by the current assumption list Γ and the conclusion A and organise numerous useful lemmas about proof trees categorically. We prove categorical properties about proof trees up to (syntactic) identity as well as up to βηconvertibility. We prove that our notion of proof trees is equivalent in an appropriate sense to more traditional representations of lambda terms. The formalisation is carried out in the proof assistant ALF for MartinLöf type theory. 1