Results 1 
7 of
7
A BURGESSIAN CRITIQUE OF NOMINALISTIC TENDENCIES IN CONTEMPORARY MATHEMATICS AND ITS HISTORIOGRAPHY
, 2012
"... ..."
MEANING IN CLASSICAL MATHEMATICS: IS IT AT ODDS WITH INTUITIONISM?
, 2011
"... ar ..."
(Show Context)
Pluralism and the Foundations of Mathematics
, 2006
"... A plurality of approaches to foundational aspects of mathematics is a fact of life. Two loci of this are discussed here, the classicism/constructivism controversy over standards of proof, and the plurality of universes of discourse for mathematics arising in set theory and in category theory, whose ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
A plurality of approaches to foundational aspects of mathematics is a fact of life. Two loci of this are discussed here, the classicism/constructivism controversy over standards of proof, and the plurality of universes of discourse for mathematics arising in set theory and in category theory, whose problematic relationship is discussed. The first case illustrates the hypothesis that asufficiently rich subject matter may require a multiplicity of approaches. The second case, while in some respects special to mathematics, raises issues of ontological multiplicity and relativity encountered in the natural sciences as well. 1
A DEFENCE OF MATHEMATICAL PLURALISM
, 2004
"... We approach the philosophy of mathematics via a discussion of the differences between classical mathematics and constructive mathematics, arguing that each is a valid activity within its own context. ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
We approach the philosophy of mathematics via a discussion of the differences between classical mathematics and constructive mathematics, arguing that each is a valid activity within its own context.
PLURALISM IN MATHEMATICS
, 2004
"... We defend pluralism in mathematics, and in particular Errett Bishop’s constructive approach to mathematics, on pragmatic grounds, avoiding the philosophical issues which have dissuaded many mathematicians from taking it seriously. We also explain the computational value of interval arithmetic. ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
We defend pluralism in mathematics, and in particular Errett Bishop’s constructive approach to mathematics, on pragmatic grounds, avoiding the philosophical issues which have dissuaded many mathematicians from taking it seriously. We also explain the computational value of interval arithmetic.
On the calculating power of Laplace’s demon (Part I)
, 2006
"... We discuss several ways of making precise the informal concept of physical determinism, drawing on ideas from mathematical logic and computability theory. We outline a programme of investigating these notions of determinism in detail for specific, precisely articulated physical theories. We make a s ..."
Abstract
 Add to MetaCart
(Show Context)
We discuss several ways of making precise the informal concept of physical determinism, drawing on ideas from mathematical logic and computability theory. We outline a programme of investigating these notions of determinism in detail for specific, precisely articulated physical theories. We make a start on our programme by proposing a general logical framework for describing physical theories, and analysing several possible formulations of a simple Newtonian theory from the point of view of determinism. Our emphasis throughout is on clarifying the precise physical and metaphysical assumptions that typically underlie a claim that some physical theory is ‘deterministic’. A sequel paper is planned, in which we shall apply similar methods to the analysis of other physical theories. Along the way, we discuss some possible repercussions of this kind of investigation for both physics and logic. 1