Results 1  10
of
19
Constructing pairingfriendly genus 2 curves over prime fields with ordinary Jacobians
 In: proceedings of Pairing 2007, LNCS 4575
, 2007
"... Abstract. We provide the first explicit construction of genus 2 curves over finite fields whose Jacobians are ordinary, have large primeorder subgroups, and have small embedding degree. Our algorithm is modeled on the CocksPinch method for constructing pairingfriendly elliptic curves [5], and wor ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
Abstract. We provide the first explicit construction of genus 2 curves over finite fields whose Jacobians are ordinary, have large primeorder subgroups, and have small embedding degree. Our algorithm is modeled on the CocksPinch method for constructing pairingfriendly elliptic curves [5], and works for arbitrary embedding degrees k and prime subgroup orders r. The resulting abelian surfaces are defined over prime fields Fq with q ≈ r 4. We also provide an algorithm for constructing genus 2 curves over prime fields Fq with ordinary Jacobians J having the property that J[r] ⊂ J(Fq) or J[r] ⊂ J(F q k) for any even k. 1
Computing endomorphism rings of jacobians of genus 2 curves
 In Symposium on Algebraic Geometry and its Applications, Tahiti
, 2006
"... Abstract. We present probabilistic algorithms which, given a genus 2 curve C defined over a finite field and a quartic CM field K, determine whether the endomorphism ring of the Jacobian J of C is the full ring of integers in K. In particular, we present algorithms for computing the field of definit ..."
Abstract

Cited by 9 (5 self)
 Add to MetaCart
Abstract. We present probabilistic algorithms which, given a genus 2 curve C defined over a finite field and a quartic CM field K, determine whether the endomorphism ring of the Jacobian J of C is the full ring of integers in K. In particular, we present algorithms for computing the field of definition of, and the action of Frobenius on, the subgroups J[ℓ d] for prime powers ℓ d. We use these algorithms to create the first implementation of Eisenträger and Lauter’s algorithm for computing Igusa class polynomials via the Chinese Remainder Theorem [EL], and we demonstrate the algorithm for a few small examples. We observe that in practice the running time of the CRT algorithm is dominated not by the endomorphism ring computation but rather by the need to compute p 3 curves for many small primes p. 1.
Class invariants for quartic CM fields
, 2004
"... Abstract. One can define class invariants for a quartic primitive CM field K as special values of certain Siegel (or Hilbert) modular functions at CM points corresponding to K. Such constructions were given in [DSG] and [Lau]. We provide explicit bounds on the primes appearing in the denominators of ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
Abstract. One can define class invariants for a quartic primitive CM field K as special values of certain Siegel (or Hilbert) modular functions at CM points corresponding to K. Such constructions were given in [DSG] and [Lau]. We provide explicit bounds on the primes appearing in the denominators of these algebraic numbers. This allows us, in particular, to construct Sunits in certain abelian extensions of a reflex field of K, where S is effectively determined by K, and to bound the primes appearing in the denominators of the Igusa class polynomials arising in the construction of genus 2 curves with CM, as conjectured in [Lau]. 1.
EXPLICIT CMTHEORY FOR LEVEL 2STRUCTURES ON ABELIAN SURFACES
"... Abstract. For a complex abelian surface A with endomorphism ring isomorphic to the maximal order in a quartic CMfield K, the Igusa invariants j1(A), j2(A), j3(A) generate an unramified abelian extension of the reflex field of K. In this paper we give an explicit geometric description of the Galois ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Abstract. For a complex abelian surface A with endomorphism ring isomorphic to the maximal order in a quartic CMfield K, the Igusa invariants j1(A), j2(A), j3(A) generate an unramified abelian extension of the reflex field of K. In this paper we give an explicit geometric description of the Galois action of the class group of this reflex field on j1(A), j2(A), j3(A). Our description can be expressed by maps between various Siegel modular varieties, and we can explicitly compute the action for ideals of small norm. We use the Galois action to modify the CRT method for computing Igusa class polynomials, and our run time analysis shows that this yields a significant improvement. Furthermore, we find cycles in isogeny graphs for abelian surfaces, thereby implying that the ‘isogeny volcano ’ algorithm to compute endomorphism rings of ordinary elliptic curves over finite fields does not have a straightforward generalization to computing endomorphism rings of abelian surfaces over finite fields. 1.
Computing endomorphism rings of elliptic curves under the GRH
 Journal of Mathematical Cryptology
"... We design a probabilistic algorithm for computing endomorphism rings of ordinary elliptic curves defined over finite fields that we prove has a subexponential runtime in the size of the base field, assuming solely the generalized Riemann hypothesis. Additionally, we improve the asymptotic complexity ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
We design a probabilistic algorithm for computing endomorphism rings of ordinary elliptic curves defined over finite fields that we prove has a subexponential runtime in the size of the base field, assuming solely the generalized Riemann hypothesis. Additionally, we improve the asymptotic complexity of previously known, heuristic, subexponential methods by describing a faster isogenycomputing routine. 1
Improved CRT algorithm for class polynomials in genus 2.” In: Algorithmic Number Theory — ANTSX. Edited by Everett Howe and Kiran Kedlaya
 Mathematical Science Publishers
"... Abstract. We present a generalization to genus 2 of the probabilistic algorithm in Sutherland [28] for computing Hilbert class polynomials. The improvement over the algorithm presented in [5] for the genus 2 case, is that we do not need to find a curve in the isogeny class with endomorphism ring whi ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. We present a generalization to genus 2 of the probabilistic algorithm in Sutherland [28] for computing Hilbert class polynomials. The improvement over the algorithm presented in [5] for the genus 2 case, is that we do not need to find a curve in the isogeny class with endomorphism ring which is the maximal order: rather we present a probabilistic algorithm for “going up ” to a maximal curve (a curve with maximal endomorphism ring), once we find any curve in the right isogeny class. Then we use the structure of the Shimura class group and the computation of (ℓ, ℓ)isogenies to compute all isogenous maximal curves from an initial one. This article is an extended version of the version published at ANTS X. 1.
MODULAR POLYNOMIALS FOR GENUS 2
, 2009
"... Modular polynomials are an important tool in many algorithms involving elliptic curves. In this article we investigate their generalization to the genus 2 case following pioneering work by Gaudry and Dupont. We prove various properties of these genus 2 modular polynomials and give an improved way to ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Modular polynomials are an important tool in many algorithms involving elliptic curves. In this article we investigate their generalization to the genus 2 case following pioneering work by Gaudry and Dupont. We prove various properties of these genus 2 modular polynomials and give an improved way to explicitly compute them.
Computing Igusa class polynomials
, 2008
"... We give an algorithm that computes the genus two class polynomials of a primitive quartic CM field K, and we give a runtime bound and a proof of correctness of this algorithm. This is the first proof of correctness and the first runtime bound of any algorithm that computes these polynomials. Our alg ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
We give an algorithm that computes the genus two class polynomials of a primitive quartic CM field K, and we give a runtime bound and a proof of correctness of this algorithm. This is the first proof of correctness and the first runtime bound of any algorithm that computes these polynomials. Our algorithm uses complex analysis and runs in time e O( ∆ 7/2), where ∆ is the discriminant of K. 1
EXPLICIT CMTHEORY IN DIMENSION 2
"... Abstract. For a complex abelian surface A with endomorphism ring isomorphic to the maximal order in a quartic CMfield K, the Igusa invariants j1(A), j2(A), j3(A) generate an abelian extension of the reflex field of K. In this paper we give an explicit description of the Galois action of the class g ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. For a complex abelian surface A with endomorphism ring isomorphic to the maximal order in a quartic CMfield K, the Igusa invariants j1(A), j2(A), j3(A) generate an abelian extension of the reflex field of K. In this paper we give an explicit description of the Galois action of the class group of this reflex field on j1(A), j2(A), j3(A). We give a geometric description which can be expressed by maps between various Siegel modular varieties. We can explicitly compute this action for ideals of small norm, and this allows us to improve the CRT method for computing Igusa class polynomials. Furthermore, we find cycles in isogeny graphs for abelian surfaces, thereby implying that the ‘isogeny volcano ’ algorithm to compute endomorphism rings of ordinary elliptic curves over finite fields does not have a straightforward generalization to computing endomorphism rings of abelian surfaces over finite fields. 1.
Computing genus 2 curves from invariants on the Hilbert moduli space
 J. Number Theory
"... Abstract. We give a new method for generating genus 2 curves over a finite field with a given number of points on the Jacobian of the curve. We define two new invariants for genus 2 curves as values of modular functions on the Hilbert moduli space and show how to compute them. We relate them to the ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. We give a new method for generating genus 2 curves over a finite field with a given number of points on the Jacobian of the curve. We define two new invariants for genus 2 curves as values of modular functions on the Hilbert moduli space and show how to compute them. We relate them to the usual three Igusa invariants on the Siegel moduli space and give an algorithm to construct curves using these new invariants. Our approach simplifies the complex analytic method for computing genus 2 curves for cryptography and reduces the amount of computation required. 1.