Results 11  20
of
2,541
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract

Cited by 286 (0 self)
 Add to MetaCart
(Show Context)
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
Locality Preserving Projections
, 2002
"... Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data s ..."
Abstract

Cited by 234 (16 self)
 Add to MetaCart
Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP should be seen as an alternative to Principal Component Analysis (PCA)  a classical linear technique that projects the data along the directions of maximal variance. When the high dimensional data lies on a low dimensional manifold embedded in the ambient space, the Locality Preserving Projections are obtained by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold. As a result, LPP shares many of the data representation properties of nonlinear techniques such as Laplacian Eigenmaps or Locally Linear Embedding. Yet LPP is linear and more crucially is defined everywhere in ambient space rather than just on the training data points. This is borne out by illustrative examples on some high dimensional data sets.
Probabilistic Visual Learning for Object Detection
, 1995
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for a unimodal distribution) and a multivari ..."
Abstract

Cited by 217 (15 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for a unimodal distribution) and a multivariate MixtureofGaussians model (for multimodal distributions). These probability densities are then used to formulate a maximumlikelihood estimation framework for visual search and target detection for automatic object recognition. This learning technique is tested in experiments with modeling and subsequent detection of human faces and nonrigid objects such as hands.
Minimax Entropy Principle and Its Application to Texture Modeling
, 1997
"... This article proposes a general theory and methodology, called the minimax entropy principle, for building statistical models for images (or signals) in a variety of applications. This principle consists of two parts. The first is the maximum entropy principle for feature binding (or fusion): for a ..."
Abstract

Cited by 201 (41 self)
 Add to MetaCart
This article proposes a general theory and methodology, called the minimax entropy principle, for building statistical models for images (or signals) in a variety of applications. This principle consists of two parts. The first is the maximum entropy principle for feature binding (or fusion): for a certain set of feature statistics, a distribution can be built to bind these feature statistics together by maximizing the entropy over all distributions that reproduce these feature statistics. The second part is the minimum entropy principle for feature selection: among all plausible sets of feature statistics, we choose the set whose maximum entropy distribution has the minimum entropy. Computational and inferential issues in both parts are addressed, in particular, a feature pursuit procedure is proposed for approximately selecting the optimal set of features. The model complexity is restricted because of the sample variation in the observed feature statistics. The minimax entropy principle is applied to texture modeling, where a novel Markov random field (MRF) model, called FRAME (Filter, Random field, And Minimax Entropy), is derived, and encouraging results are obtained in experiments on a variety of texture images. Relationship between our theory and the mechanisms of neural computation is also discussed.
Infinite Latent Feature Models and the Indian Buffet Process
, 2005
"... We define a probability distribution over equivalence classes of binary matrices with a finite number of rows and an unbounded number of columns. This distribution ..."
Abstract

Cited by 189 (37 self)
 Add to MetaCart
We define a probability distribution over equivalence classes of binary matrices with a finite number of rows and an unbounded number of columns. This distribution
Simplifying Surfaces with Color and Texture using Quadric Error Metrics
, 1998
"... There are a variety of application areas in which there is a need for simplifying complex polygonal surface models. These models often have material properties such as colors, textures, and surface normals. Our surface simplification algorithm, based on iterative edge contraction and quadric error m ..."
Abstract

Cited by 188 (2 self)
 Add to MetaCart
There are a variety of application areas in which there is a need for simplifying complex polygonal surface models. These models often have material properties such as colors, textures, and surface normals. Our surface simplification algorithm, based on iterative edge contraction and quadric error metrics, can rapidly produce high quality approximations of such models. We present a natural extension of our original error metric that can account for a wide range of vertex attributes. CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and Object Modelingsurface and object representations Keywords: surface simplification, multiresolution modeling, level of detail, quadric error metric, edge contraction, surface properties, discontinuity preservation 1 INTRODUCTION Many applications in computer graphics and visualization can benefit from automatic simplification of complex polygonal models. Such models are usually not only geometrically complex, but they may also have ...
Unsupervised Learning of Image Manifolds by Semidefinite Programming
, 2004
"... Can we detect low dimensional structure in high dimensional data sets of images and video? The problem of dimensionality reduction arises often in computer vision and pattern recognition. In this paper, we propose a new solution to this problem based on semidefinite programming. Our algorithm can be ..."
Abstract

Cited by 176 (9 self)
 Add to MetaCart
Can we detect low dimensional structure in high dimensional data sets of images and video? The problem of dimensionality reduction arises often in computer vision and pattern recognition. In this paper, we propose a new solution to this problem based on semidefinite programming. Our algorithm can be used to analyze high dimensional data that lies on or near a low dimensional manifold. It overcomes certain limitations of previous work in manifold learning, such as Isomap and locally linear embedding. We illustrate the algorithm on easily visualized examples of curves and surfaces, as well as on actual images of faces, handwritten digits, and solid objects.
Synthesizing physically realistic human motion in lowdimensional, behaviorspecific spaces
 ACM Transactions on Graphics
, 2004
"... Optimization is an appealing way to compute the motion of an animated character because it allows the user to specify the desired motion in a sparse, intuitive way. The difficulty of solving this problem for complex characters such as humans is due in part to the high dimensionality of the search sp ..."
Abstract

Cited by 162 (13 self)
 Add to MetaCart
Optimization is an appealing way to compute the motion of an animated character because it allows the user to specify the desired motion in a sparse, intuitive way. The difficulty of solving this problem for complex characters such as humans is due in part to the high dimensionality of the search space. The dimensionality is an artifact of the problem representation because most dynamic human behaviors are intrinsically low dimensional with, for example, legs and arms operating in a coordinated way. We describe a method that exploits this observation to create an optimization problem that is easier to solve. Our method utilizes an existing motion capture database to find a lowdimensional space that captures the properties of the desired behavior. We show that when the optimization problem is solved within this lowdimensional subspace, a sparse sketch can be used as an initial guess and full physics constraints can be enabled. We demonstrate the power of our approach with examples of forward, vertical, and turning jumps; with running and walking; and with several acrobatic flips.
Robust Principal Component Analysis?
, 2009
"... This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse co ..."
Abstract

Cited by 160 (7 self)
 Add to MetaCart
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the ℓ1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.
Efficient simplification of point sampled surfaces
 Proceedings of 13th IEEE Visualization Conference
, 2002
"... ..."