Results 1  10
of
31
Constraint Logic Programming: A Survey
"... Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in differe ..."
Abstract

Cited by 771 (23 self)
 Add to MetaCart
Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in different areas of applications. In this survey of CLP, a primary goal is to give a systematic description of the major trends in terms of common fundamental concepts. The three main parts cover the theory, implementation issues, and programming for applications.
Compiling Constraints in clp(FD)
, 1996
"... We present the clp(FD) system: a Constraint Logic Programming language with finite domain constraints... ..."
Abstract

Cited by 147 (19 self)
 Add to MetaCart
We present the clp(FD) system: a Constraint Logic Programming language with finite domain constraints...
Practical Applications of Constraint Programming
 CONSTRAINTS
, 1996
"... Constraint programming is newly flowering in industry. Several companies have recently started up to exploit the technology, and the number of industrial applications is now growing very quickly. This survey will seek, by examples, ..."
Abstract

Cited by 105 (1 self)
 Add to MetaCart
Constraint programming is newly flowering in industry. Several companies have recently started up to exploit the technology, and the number of industrial applications is now growing very quickly. This survey will seek, by examples,
Foundations of Timed Concurrent Constraint Programming
 Proceedings of the Ninth Annual IEEE Symposium on Logic in Computer Science
, 1994
"... We develop a model for timed, reactive computation by extending the asynchronous, untimed concurrent constraint programming model in a simple and uniform way. In the spirit of process algebras, we develop some combinators expressible in this model, and reconcile their operational, logical and denota ..."
Abstract

Cited by 89 (10 self)
 Add to MetaCart
We develop a model for timed, reactive computation by extending the asynchronous, untimed concurrent constraint programming model in a simple and uniform way. In the spirit of process algebras, we develop some combinators expressible in this model, and reconcile their operational, logical and denotational character. We show how programs may be compiled into finitestate machines with loopfree computations at each state, thus guaranteeing bounded response time. 1 Introduction and Motivation Reactive systems [12,3,9] are those that react continuously with their environment at a rate controlled by the environment. Execution in a reactive system proceeds in bursts of activity. In each phase, the environment stimulates the system with an input, obtains a response in bounded time, and may then be inactive (with respect to the system) for an arbitrary period of time before initiating the next burst. Examples of reactive systems are controllers and signalprocessing systems. The primary issu...
ModelBased Programming of Intelligent Embedded Systems and Robotic Space Explorers
 In Proceedings of the IEEE: Special Issue on Modeling and Design of Embedded Software
, 2003
"... This paper develops the Reactive ModelBased Programming Language (RMPL) and its executive, called Titan. RMPL provides the features of synchronous, reactive languages, with the added ability of reading and writing to state variables that are hidden within the physical plant being controlled. Titan ..."
Abstract

Cited by 63 (26 self)
 Add to MetaCart
This paper develops the Reactive ModelBased Programming Language (RMPL) and its executive, called Titan. RMPL provides the features of synchronous, reactive languages, with the added ability of reading and writing to state variables that are hidden within the physical plant being controlled. Titan executes an RMPL program using extensive componentbased declarative models of the plant to track states, analyze anomalous situations, and generate novel control sequences. Within its reactive control loop, Titan employs propositional inference to deduce the system's current and desired states, and it employs modelbased reactive planning to move the plant from the current to the desired state
A Foundation for Higherorder Concurrent Constraint Programming
, 1994
"... We present the flcalculus, a computational calculus for higherorder concurrent programming. The calculus can elegantly express higherorder functions (both eager and lazy) and concurrent objects with encapsulated state and multiple inheritance. The primitives of the flcalculus are logic variables ..."
Abstract

Cited by 60 (13 self)
 Add to MetaCart
We present the flcalculus, a computational calculus for higherorder concurrent programming. The calculus can elegantly express higherorder functions (both eager and lazy) and concurrent objects with encapsulated state and multiple inheritance. The primitives of the flcalculus are logic variables, names, procedural abstraction, and cells. Cells provide a notion of state that is fully compatible with concurrency and constraints. Although it does not have a dedicated communication primitive, the flcalculus can elegantly express onetomany and manytoone communication. There is an interesting relationship between the flcalculus and the ßcalculus: The flcalculus is subsumed by a calculus obtained by extending the asynchronous and polyadic ßcalculus with logic variables. The flcalculus can be extended with primitives providing for constraintbased problem solving in the style of logic programming. A such extended flcalculus has the remarkable property that it combines firstor...
Programming in Timed Concurrent Constraint Languages
, 1994
"... This paper explores Lhc expressive power of Lhc tcc paradigm. The origin of Lhc work in Lhc inLcgraLion of synchronous and consLrainL programming is described. The basic conceptual and maLhcmaLical framework developed in Lhc spirk of Lhc modelbased approach characLcrisLic of LhcorcLical compuLcr sc ..."
Abstract

Cited by 34 (4 self)
 Add to MetaCart
This paper explores Lhc expressive power of Lhc tcc paradigm. The origin of Lhc work in Lhc inLcgraLion of synchronous and consLrainL programming is described. The basic conceptual and maLhcmaLical framework developed in Lhc spirk of Lhc modelbased approach characLcrisLic of LhcorcLical compuLcr science is reviewed. Wc show LhaL a range of consLrucLs for expressing LimcouLs, prccmpLion and oLhcr complicaLcd paLLcrns of Lcmporal acLivky arc expressible in the basic model and languageframework. Indeed, we present a single construct on processes, definable in the language, that can simulate the effect of other preemption constructs
Stochastic processes as concurrent constraint programs
 In Symposium on Principles of Programming Languages
, 1999
"... ) Vineet Gupta Radha Jagadeesan Prakash Panangaden y vgupta@mail.arc.nasa.gov radha@cs.luc.edu prakash@cs.mcgill.ca Caelum Research Corporation Dept. of Math. and Computer Sciences School of Computer Science NASA Ames Research Center Loyola UniversityLake Shore Campus McGill University Moffe ..."
Abstract

Cited by 29 (1 self)
 Add to MetaCart
) Vineet Gupta Radha Jagadeesan Prakash Panangaden y vgupta@mail.arc.nasa.gov radha@cs.luc.edu prakash@cs.mcgill.ca Caelum Research Corporation Dept. of Math. and Computer Sciences School of Computer Science NASA Ames Research Center Loyola UniversityLake Shore Campus McGill University Moffett Field CA 94035, USA Chicago IL 60626, USA Montreal, Quebec, Canada Abstract This paper describes a stochastic concurrent constraint language for the description and programming of concurrent probabilistic systems. The language can be viewed both as a calculus for describing and reasoning about stochastic processes and as an executable language for simulating stochastic processes. In this language programs encode probability distributions over (potentially infinite) sets of objects. We illustrate the subtleties that arise from the interaction of constraints, random choice and recursion. We describe operational semantics of these programs (programs are run by sampling random choices), deno...
A Logical View Of Concurrent Constraint Programming
, 1995
"... . Concurrent Constraint Programming (CCP) has been the subject of growing interest as the focus of a new paradigm for concurrent computation. Like logic programming it claims close relations to logic. In fact CCP languages are logics in a certain sense that we make precise in this paper. In recent ..."
Abstract

Cited by 23 (4 self)
 Add to MetaCart
. Concurrent Constraint Programming (CCP) has been the subject of growing interest as the focus of a new paradigm for concurrent computation. Like logic programming it claims close relations to logic. In fact CCP languages are logics in a certain sense that we make precise in this paper. In recent work it was shown that the denotational semantics of determinate concurrent constraint programming languages forms a fibred categorical structure called a hyperdoctrine, which is used as the basis of the categorical formulation of firstorder logic. What this shows is that the combinators of determinate CCP can be viewed as logical connectives. In this paper we extend these ideas to the operational semantics of such languages and thus make available similar analogies for a much broader variety of languages including indeterminate CCP languages and concurrent blockstructured imperative languages. CR Classification: F3.1, F3.2, D1.3, D3.3 Key words: Concurrent constraint programming, simula...
Boolean Constraint Solving Using clp(FD)
"... We present a boolean constraint logic language clp(B/FD) built upon a language over finite domains clp(FD) which uses a local propagation constraint solver. It is based on a single primitive constraint which allows the boolean solver to be encoded at a lowlevel. The boolean solver obtained in this ..."
Abstract

Cited by 18 (5 self)
 Add to MetaCart
We present a boolean constraint logic language clp(B/FD) built upon a language over finite domains clp(FD) which uses a local propagation constraint solver. It is based on a single primitive constraint which allows the boolean solver to be encoded at a lowlevel. The boolean solver obtained in this way is both very simple and very efficient: on average it is eight times faster than the CHIP propagationbased boolean solver, i.e. nearly an order of magnitude faster, and infinitely better than the CHIP boolean unification solver. It also performs on average several times faster than specialpurpose standalone boolean solvers.