Results 1 
3 of
3
Semicontinuous sized types and termination
 In Zoltán Ésik, editor, Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of the EACSL
"... Abstract. Some typebased approaches to termination use sized types: an ordinal bound for the size of a data structure is stored in its type. A recursive function over a sized type is accepted if it is visible in the type system that recursive calls occur just at a smaller size. This approach is onl ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
(Show Context)
Abstract. Some typebased approaches to termination use sized types: an ordinal bound for the size of a data structure is stored in its type. A recursive function over a sized type is accepted if it is visible in the type system that recursive calls occur just at a smaller size. This approach is only sound if the type of the recursive function is admissible, i.e., depends on the size index in a certain way. To explore the space of admissible functions in the presence of higherkinded data types and impredicative polymorphism, a semantics is developed where sized types are interpreted as functions from ordinals into sets of strongly normalizing terms. It is shown that upper semicontinuity of such functions is a sufficient semantic criterion for admissibility. To provide a syntactical criterion, a calculus for semicontinuous functions is developed. 1.
Fixed Points of Type Operators and Primitive Recursion
, 2004
"... Abstract. For nested or heterogeneous datatypes, terminating recursion schemes considered so far have been instances of iteration, excluding efficient definitions of fixedpoint unfolding. Two solutions of this problem are proposed: The first one is a system with equirecursive nonstrictly positive ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract. For nested or heterogeneous datatypes, terminating recursion schemes considered so far have been instances of iteration, excluding efficient definitions of fixedpoint unfolding. Two solutions of this problem are proposed: The first one is a system with equirecursive nonstrictly positive type operators of arbitrary finite kinds, where fixedpoint unfolding is computationally invisible due to its treatment on the level of type equality. Positivity is ensured by a polarized kinding system, and strong normalization is proven by a model construction based on saturated sets. The second solution is a formulation of primitive recursion for arbitrary type constructors of any rank. Although without positivity restriction, the second system embeds—even operationally—into the first one. 1