Results 1  10
of
286
How bad is selfish routing?
 JOURNAL OF THE ACM
, 2002
"... We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route t ..."
Abstract

Cited by 506 (27 self)
 Add to MetaCart
We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route traffic such that the sum of all travel times—the total latency—is minimized. In many settings, it may be expensive or impossible to regulate network traffic so as to implement an optimal assignment of routes. In the absence of regulation by some central authority, we assume that each network user routes its traffic on the minimumlatency path available to it, given the network congestion caused by the other users. In general such a “selfishly motivated ” assignment of traffic to paths will not minimize the total latency; hence, this lack of regulation carries the cost of decreased network performance. In this article, we quantify the degradation in network performance due to unregulated traffic. We prove that if the latency of each edge is a linear function of its congestion, then the total latency of the routes chosen by selfish network users is at most 4/3 times the minimum possible total latency (subject to the condition that all traffic must be routed). We also consider the more general setting in which edge latency functions are assumed only to be continuous and nondecreasing in the edge congestion. Here, the total
The price of stability for network design with fair cost allocation
 In Proceedings of the 45th Annual Symposium on Foundations of Computer Science (FOCS
, 2004
"... Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of selfinterested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite differ ..."
Abstract

Cited by 205 (26 self)
 Add to MetaCart
Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of selfinterested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite different from the centrally enforced optimum. We study the quality of the best Nash equilibrium, and refer to the ratio of its cost to the optimum network cost as the price of stability. The best Nash equilibrium solution has a natural meaning of stability in this context — it is the optimal solution that can be proposed from which no user will defect. We consider the price of stability for network design with respect to one of the most widelystudied protocols for network cost allocation, in which the cost of each edge is divided equally between users whose connections make use of it; this fairdivision scheme can be derived from the Shapley value, and has a number of basic economic motivations. We show that the price of stability for network design with respect to this fair cost allocation is O(log k), where k is the number of users, and that a good Nash equilibrium can be achieved via bestresponse dynamics in which users iteratively defect from a starting solution. This establishes that the fair cost allocation protocol is in fact a useful mechanism for inducing strategic behavior to form nearoptimal equilibria. We discuss connections to the class of potential games defined by Monderer and Shapley, and extend our results to cases in which users are seeking to balance network design costs with latencies in the constructed network, with stronger results when the network has only delays and no construction costs. We also present bounds on the convergence time of bestresponse dynamics, and discuss extensions to a weighted game.
Strategyproof Sharing of Submodular Costs: budget balance versus efficiency
, 1999
"... A service is produced for a set of agents. The service is binary, each agent either receives service or not, and the total cost of service is a submodular function of the set receiving service. We investigate strategyproof mechanisms that elicit individual willingness to pay, decide who is served ..."
Abstract

Cited by 159 (16 self)
 Add to MetaCart
A service is produced for a set of agents. The service is binary, each agent either receives service or not, and the total cost of service is a submodular function of the set receiving service. We investigate strategyproof mechanisms that elicit individual willingness to pay, decide who is served, and then share the cost among them. If such a mechanism is budget balanced (covers cost exactly), it cannot be efficient (serve the surplus maximizing set of users) and viceversa. We characterize the rich family of budget balanced and group strategyproof mechanisms; they correspond to the family of cost sharing formulae where an agent's cost share does not decrease when the set of users expand. The mechanism associated with the Shapley value cost sharing formula is characterized by the property that its worst welfare loss is minimal. When we require efficiency rather than budget balance  the more common route in the literature  we find that there is a single ClarkeGroves mech...
The Complexity of Pure Nash Equilibria
, 2004
"... We investigate from the computational viewpoint multiplayer games that are guaranteed to have pure Nash equilibria. We focus on congestion games, and show that a pure Nash equilibrium can be computed in polynomial time in the symmetric network case, while the problem is PLScomplete in general. ..."
Abstract

Cited by 141 (6 self)
 Add to MetaCart
We investigate from the computational viewpoint multiplayer games that are guaranteed to have pure Nash equilibria. We focus on congestion games, and show that a pure Nash equilibrium can be computed in polynomial time in the symmetric network case, while the problem is PLScomplete in general. We discuss implications to nonatomic congestion games, and we explore the scope of the potential function method for proving existence of pure Nash equilibria.
Convergence time to nash equilibria
 In ICALP
, 2003
"... Abstract. We study the number of steps required to reach a pure Nash Equilibrium in a load balancing scenario where each job behaves selfishly and attempts to migrate to a machine which will minimize its cost. We consider a variety of load balancing models, including identical, restricted, related a ..."
Abstract

Cited by 79 (5 self)
 Add to MetaCart
Abstract. We study the number of steps required to reach a pure Nash Equilibrium in a load balancing scenario where each job behaves selfishly and attempts to migrate to a machine which will minimize its cost. We consider a variety of load balancing models, including identical, restricted, related and unrelated machines. Our results have a crucial dependence on the weights assigned to jobs. We consider arbitrary weights, integer weights, K distinct weights and identical (unit) weights. We look both at an arbitrary schedule (where the only restriction is that a job migrates to a machine which lowers its cost) and specific efficient schedulers (such as allowing the largest weight job to move first). 1
Equilibrium Selection in Global Games with Strategic Complementarities
 Journal of Economic Theory
, 2003
"... We study games with strategic complementarities, arbitrary numbers of players and actions, and slightly noisy payoff signals. We prove limit uniqueness: as the signal noise vanishes, the game has a unique strategy profile that survives iterative dominance. This generalizes a result of Carlsson and v ..."
Abstract

Cited by 66 (11 self)
 Add to MetaCart
We study games with strategic complementarities, arbitrary numbers of players and actions, and slightly noisy payoff signals. We prove limit uniqueness: as the signal noise vanishes, the game has a unique strategy profile that survives iterative dominance. This generalizes a result of Carlsson and van Damme (1993) for two player, two action games. The surviving profile, however, may depend on fine details of the structure of the noise. We provide sufficient conditions on payoffs for there to be noiseindependent selection.
Pure Nash Equilibria: Hard and Easy Games
"... In this paper we investigate complexity issues related to pure Nash equilibria of strategic games. We show that, even in very restrictive settings, determining whether a game has a pure Nash Equilibrium is NPhard, while deciding whether a game has a strong Nash equilibrium is Stcomplete. We then s ..."
Abstract

Cited by 66 (3 self)
 Add to MetaCart
In this paper we investigate complexity issues related to pure Nash equilibria of strategic games. We show that, even in very restrictive settings, determining whether a game has a pure Nash Equilibrium is NPhard, while deciding whether a game has a strong Nash equilibrium is Stcomplete. We then study practically relevant restrictions that lower the complexity. In particular, we are interested in quantitative and qualitative restrictions of the way each player's move depends on moves of other players. We say that a game has small neighborhood if the " utility function for each player depends only on (the actions of) a logarithmically small number of other players, The dependency structure of a game G can he expressed by a graph G(G) or by a hypergraph II(G). Among other results, we show that if jC has small neighborhood and if II(G) has botmdecl hypertree width (or if G(G) has bounded treewidth), then finding pure Nash and Pareto equilibria is feasible in polynomial time. If the game is graphical, then these problems are LOGCFLcomplete and thus in the class _NC ~ of highly parallelizable problems. 1 Introduction and Overview of Results The theory of strategic games and Nash equilibria has important applications in economics and decision making [31, 2]. Determining whether Nash equilibria exist, and effectively computing
Selfish Unsplittable Flows
 Theoretical Computer Science
, 2004
"... What is the price of anarchy when unsplittable demands are routed selfishly in general networks with loaddependent edge delays? Motivated by this question we generalize the model of [14] to the case of weighted congestion games. We show that varying demands of users crucially affect the nature o ..."
Abstract

Cited by 65 (7 self)
 Add to MetaCart
What is the price of anarchy when unsplittable demands are routed selfishly in general networks with loaddependent edge delays? Motivated by this question we generalize the model of [14] to the case of weighted congestion games. We show that varying demands of users crucially affect the nature of these games, which are no longer isomorphic to exact potential games, even for very simple instances. Indeed we construct examples where even a singlecommodity (weighted) network congestion game may have no pure Nash equilibrium.