Results 1  10
of
33
Independent Component Analysis
 Neural Computing Surveys
, 2001
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 1697 (98 self)
 Add to MetaCart
A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the original data. Wellknown linear transformation methods include, for example, principal component analysis, factor analysis, and projection pursuit. A recently developed linear transformation method is independent component analysis (ICA), in which the desired representation is the one that minimizes the statistical dependence of the components of the representation. Such a representation seems to capture the essential structure of the data in many applications. In this paper, we survey the existing theory and methods for ICA. 1
Independent Component Filters Of Natural Images Compared With Simple Cells In Primary Visual Cortex
, 1998
"... this article we investigate to what extent the statistical properties of natural images can be used to understand the variation of receptive field properties of simple cells in the mammalian primary visual cortex. The receptive fields of simple cells have been studied extensively (e.g., Hubel & ..."
Abstract

Cited by 298 (0 self)
 Add to MetaCart
this article we investigate to what extent the statistical properties of natural images can be used to understand the variation of receptive field properties of simple cells in the mammalian primary visual cortex. The receptive fields of simple cells have been studied extensively (e.g., Hubel & Wiesel 1968, DeValois et al. 1982a, DeAngelis et al. 1993): they are localised in space and time, have bandpass characteristics in the spatial and temporal frequency domains, are oriented, and are often sensitive to the direction of motion of a stimulus. Here we will concentrate on the spatial properties of simple cells. Several hypotheses as to the function of these cells have been proposed. As the cells preferentially respond to oriented edges or lines, they can be viewed as edge or line detectors. Their joint localisation in both the spatial domain and the spatial frequency domain has led to the suggestion that they mimic Gabor filters, minimising uncertainty in both domains (Daugman 1980, Marcelja 1980). More recently, the match between the operations performed by simple cells and the wavelet transform has attracted attention (e.g., Field 1993). The approaches based on Gabor filters and wavelets basically consider processing by the visual cortex as a general image processing strategy, relatively independent of detailed assumptions about image statistics. On the other hand, the edge and line detector hypothesis is based on the intuitive notion that edges and lines are both abundant and important in images. This theme of relating simple cell properties with the statistics of natural images was explored extensively by Field (1987, 1994). He proposed that the cells are optimized specifically for coding natural images. He argued that one possibility for such a code, sparse coding...
Learning Overcomplete Representations
, 2000
"... In an overcomplete basis, the number of basis vectors is greater than the dimensionality of the input, and the representation of an input is not a unique combination of basis vectors. Overcomplete representations have been advocated because they have greater robustness in the presence of noise, can ..."
Abstract

Cited by 286 (11 self)
 Add to MetaCart
(Show Context)
In an overcomplete basis, the number of basis vectors is greater than the dimensionality of the input, and the representation of an input is not a unique combination of basis vectors. Overcomplete representations have been advocated because they have greater robustness in the presence of noise, can be sparser, and can have greater flexibility in matching structure in the data. Overcomplete codes have also been proposed as a model of some of the response properties of neurons in primary visual cortex. Previous work has focused on finding the best representation of a signal using a fixed overcomplete basis (or dictionary). We present an algorithm for learning an overcomplete basis by viewing it as probabilistic model of the observed data. We show that overcomplete bases can yield a better approximation of the underlying statistical distribution of the data and can thus lead to greater coding efficiency. This can be viewed as a generalization of the technique of independent component analysis and provides a method for Bayesian reconstruction of signals in the presence of noise and for blind source separation when there are more sources than mixtures.
Classifying Facial Actions
 IEEE Trans. Pattern Anal and Machine Intell
, 1999
"... AbstractÐThe Facial Action Coding System (FACS) [23] is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding is presently performed by highly trai ..."
Abstract

Cited by 279 (32 self)
 Add to MetaCart
(Show Context)
AbstractÐThe Facial Action Coding System (FACS) [23] is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding is presently performed by highly trained human experts. This paper explores and compares techniques for automatically recognizing facial actions in sequences of images. These techniques include analysis of facial motion through estimation of optical flow; holistic spatial analysis, such as principal component analysis, independent component analysis, local feature analysis, and linear discriminant analysis; and methods based on the outputs of local filters, such as Gabor wavelet representations and local principal components. Performance of these systems is compared to naive and expert human subjects. Best performances were obtained using the Gabor wavelet representation and the independent component representation, both of which achieved 96 percent accuracy for classifying 12 facial actions of the upper and lower face. The results provide converging evidence for the importance of using local filters, high spatial frequencies, and statistical independence for classifying facial actions.
Independent Factor Analysis
 Neural Computation
, 1999
"... We introduce the independent factor analysis (IFA) method for recovering independent hidden sources from their observed mixtures. IFA generalizes and unifies ordinary factor analysis (FA), principal component analysis (PCA), and independent component analysis (ICA), and can handle not only square no ..."
Abstract

Cited by 238 (9 self)
 Add to MetaCart
(Show Context)
We introduce the independent factor analysis (IFA) method for recovering independent hidden sources from their observed mixtures. IFA generalizes and unifies ordinary factor analysis (FA), principal component analysis (PCA), and independent component analysis (ICA), and can handle not only square noiseless mixing, but also the general case where the number of mixtures differs from the number of sources and the data are noisy. IFA is a twostep procedure. In the first step, the source densities, mixing matrix and noise covariance are estimated from the observed data by maximum likelihood. For this purpose we present an expectationmaximization (EM) algorithm, which performs unsupervised learning of an associated probabilistic model of the mixing situation. Each source in our model is described by a mixture of Gaussians, thus all the probabilistic calculations can be performed analytically. In the second step, the sources are reconstructed from the observed data by an optimal nonlinear ...
Blind source separation of more sources than mixtures using overcomplete representations
 IEEE Sig. Proc. Lett
, 1999
"... Abstract—Empirical results were obtained for the blind source separation of more sources than mixtures using a recently proposed framework for learning overcomplete representations. This technique assumes a linear mixing model with additive noise and involves two steps: 1) learning an overcomplete r ..."
Abstract

Cited by 113 (2 self)
 Add to MetaCart
(Show Context)
Abstract—Empirical results were obtained for the blind source separation of more sources than mixtures using a recently proposed framework for learning overcomplete representations. This technique assumes a linear mixing model with additive noise and involves two steps: 1) learning an overcomplete representation for the observed data and 2) inferring sources given a sparse prior on the coefficients. We demonstrate that three speech signals can be separated with good fidelity given only two mixtures of the three signals. Similar results were obtained with mixtures of two speech signals and one music signal. Index Terms—Blind source separation, independent component analysis, overcomplete dictionary, overcomplete representation, speech signal separation. (a) (b)
Modeling the Joint Statistics of Images in the Wavelet Domain
 IN PROC SPIE, 44TH ANNUAL MEETING
, 1999
"... I describe a statistical model for natural photographic images, when decomposed in a multiscale wavelet basis. In particular, I examine both the marginal and pairwise joint histograms of wavelet coefficients at adjacent spatial locations, orientations, and spatial scales. Although the histograms ar ..."
Abstract

Cited by 104 (3 self)
 Add to MetaCart
I describe a statistical model for natural photographic images, when decomposed in a multiscale wavelet basis. In particular, I examine both the marginal and pairwise joint histograms of wavelet coefficients at adjacent spatial locations, orientations, and spatial scales. Although the histograms are highly nonGaussian, they are nevertheless well described using fairly simple parameterized density models.
Sparse Code Shrinkage: Denoising of Nongaussian Data by Maximum Likelihood Estimation
, 1999
"... Sparse coding is a method for finding a representation of data in which each of the components of the representation is only rarely significantly active. Such a representation is closely related to redundancy reduction and independent component analysis, and has some neurophysiological plausibility. ..."
Abstract

Cited by 98 (14 self)
 Add to MetaCart
Sparse coding is a method for finding a representation of data in which each of the components of the representation is only rarely significantly active. Such a representation is closely related to redundancy reduction and independent component analysis, and has some neurophysiological plausibility. In this paper, we show how sparse coding can be used for denoising. Using maximum likelihood estimation of nongaussian variables corrupted by gaussian noise, we show how to apply a softthresholding (shrinkage) operator on the components of sparse coding so as to reduce noise. Our method is closely related to the method of wavelet shrinkage, but it has the important benefit over wavelet methods that the representation is determined solely by the statistical properties of the data. The wavelet representation, on the other hand, relies heavily on certain mathematical properties (like selfsimilarity) that may be only weakly related to the properties of natural data.
Sparse components of images and optimal atomic decomposition
 Constr. Approx
"... Recently, Field, Lewicki, Olshausen, and Sejnowski have reported efforts to identify the “Sparse Components ” of image data. Their empirical findings indicate that such components have elongated shapes and assume a wide range of positions, orientations, and scales. To date, Sparse Components Analysi ..."
Abstract

Cited by 54 (5 self)
 Add to MetaCart
(Show Context)
Recently, Field, Lewicki, Olshausen, and Sejnowski have reported efforts to identify the “Sparse Components ” of image data. Their empirical findings indicate that such components have elongated shapes and assume a wide range of positions, orientations, and scales. To date, Sparse Components Analysis (SCA) has only been conducted on databases of small (e.g. 16by16) image patches and there seems limited prospect of dramatically increased resolving power. In this article, we apply mathematical analysis to a specific formalization of SCA using synthetic image models, hoping to gain insight into what might emerge from a higherresolution SCA based on n by n image patches for large n but constant field of view. In our formalization, we study a class of objects F in a functional space; they are to be represented by linear combinations of atoms from an overcomplete dictionary, and sparsity is measured by the ℓ p norm of the coefficients in the linear combination. We focus on the class F = Star α of blackandwhite images with the black region consisting of a starshaped set with αsmooth boundary. We aim to find an optimal dictionary, one achieving the optimal