Results 1  10
of
118
Measuring and testing the impact of news on volatility
 Journal of Finance
, 1993
"... This paper introduces the News Impact Curve to measure how new information is incorporated into volatility estimates. A variety of new and existing ARCH models are compared and estimated with daily Japanese stock return data to determine the shape of the News Impact Curve. New diagnostic tests are p ..."
Abstract

Cited by 339 (11 self)
 Add to MetaCart
This paper introduces the News Impact Curve to measure how new information is incorporated into volatility estimates. A variety of new and existing ARCH models are compared and estimated with daily Japanese stock return data to determine the shape of the News Impact Curve. New diagnostic tests are presented which emphasize the asymmetry of the volatility response to news. A partially nonparametric ARCH model is introduced to allow the data to estimate this shape. A comparison of this model with the existing models suggests that the best models are one by Glosten Jaganathan and Runkle (GJR) and Nelson's EGARCE. Similar results hold on a precrash sample period but are less strong.
Emerging Equity Market Volatility
, 1997
"... Understanding volatility in emerging capital markets is important for determining the cost of capital and for evaluating direct investment and asset allocation decisions. We provide an approach that allows the relative importance of world and local information to change through time in both the expe ..."
Abstract

Cited by 157 (28 self)
 Add to MetaCart
Understanding volatility in emerging capital markets is important for determining the cost of capital and for evaluating direct investment and asset allocation decisions. We provide an approach that allows the relative importance of world and local information to change through time in both the expected returns and conditional variance processes. Our timeseries and crosssectional models analyze the reasons that volatility is different across emerging markets, particularly with respect to the timing of capital market reforms. We find that capital market liberalizations often increase the correlation between local market returns and the world market but do not drive up local market volatility.
Estimating Portfolio and Consumption Choice: A Conditional Euler Equations Approach
 JOURNAL OF FINANCE
, 1999
"... This paper develops a nonparametric approach to examine how portfolio and consumption choice depends on variables that forecast timevarying investment opportunities. I estimate singleperiod and multiperiod portfolio and consumption rules of an investor with constant relative risk aversion and a on ..."
Abstract

Cited by 119 (11 self)
 Add to MetaCart
This paper develops a nonparametric approach to examine how portfolio and consumption choice depends on variables that forecast timevarying investment opportunities. I estimate singleperiod and multiperiod portfolio and consumption rules of an investor with constant relative risk aversion and a onemonth to 20year horizon. The investor allocates wealth to the NYSE index and a 30day Treasury bill. I find that the portfolio choice varies significantly with the dividend yield, default premium, term premium, and lagged excess return. Furthermore, the optimal decisions depend on the investor’s horizon and rebalancing frequency.
Stock Prices and Volume
, 1990
"... We undertake a comprehensive investigation of price and volume comovement using daily New York Stock Exchange data from 1928 to 1987. We adjust the data to take into account wellknown calendar effects and longrun trends. To describt tbe process, we use a seminonparametric estimate of the joint de ..."
Abstract

Cited by 109 (9 self)
 Add to MetaCart
We undertake a comprehensive investigation of price and volume comovement using daily New York Stock Exchange data from 1928 to 1987. We adjust the data to take into account wellknown calendar effects and longrun trends. To describt tbe process, we use a seminonparametric estimate of the joint density of current price change and volume conditional on past price changes and volume. Four empirical regularities are found: 1) positive correlation between conditional volatility and volume, 2) large price movements are followed by high volume, 3) conditioning on lagged volume substantially attenuates the "leverage " effect, and 4) after conditioning on lagged volume, there is a positive risk/return relation.
Portfolio selection in stochastic environments, Working Paper
 Review of Financial Studies
, 1999
"... In this article, I explicitly solve dynamic portfolio choice problems, up to the solution of an ordinary differential equation (ODE), when the asset returns are quadratic and the agent has a constant relative risk aversion (CRRA) coefficient. My solution includes as special cases many existing expli ..."
Abstract

Cited by 99 (7 self)
 Add to MetaCart
In this article, I explicitly solve dynamic portfolio choice problems, up to the solution of an ordinary differential equation (ODE), when the asset returns are quadratic and the agent has a constant relative risk aversion (CRRA) coefficient. My solution includes as special cases many existing explicit solutions of dynamic portfolio choice problems. I also present three applications that are not in the literature. Application 1 is the bond portfolio selection problem when bond returns are described by ‘‘quadratic term structure models.’ ’ Application 2 is the stock portfolio selection problem when stock return volatility is stochastic as in Heston model. Application 3 is a bond and stock portfolio selection problem when the interest rate is stochastic and stock returns display stochastic volatility. (JEL G11) There is substantial evidence of time variation in interest rates, expected returns, and asset return volatilities. Interest rates change over time, and although expected stock returns are not directly observed, future stock returns seem to be predictable using term structure variables and scaled prices such as dividend yields. 1 Similarly, there is welldocumented evidence
Continuous Record Asymptotics for Rolling Sample Variance Estimators
 Econometrica
, 1996
"... It is widely known that conditional covariances of asset returns change over time. ..."
Abstract

Cited by 89 (0 self)
 Add to MetaCart
It is widely known that conditional covariances of asset returns change over time.
Forecast Evaluation and Combination
 IN G.S. MADDALA AND C.R. RAO (EDS.), HANDBOOK OF STATISTICS
, 1996
"... It is obvious that forecasts are of great importance and widely used in economics and finance. Quite simply, good forecasts lead to good decisions. The importance of forecast evaluation and combination techniques follows immediately forecast users naturally have a keen interest in monitoring and ..."
Abstract

Cited by 85 (24 self)
 Add to MetaCart
It is obvious that forecasts are of great importance and widely used in economics and finance. Quite simply, good forecasts lead to good decisions. The importance of forecast evaluation and combination techniques follows immediately forecast users naturally have a keen interest in monitoring and improving forecast performance. More generally, forecast evaluation figures prominently in many questions in empirical economics and finance, such as: Are expectations rational? (e.g., Keane and Runkle, 1990; Bonham and Cohen, 1995) Are financial markets efficient? (e.g., Fama, 1970, 1991) Do macroeconomic shocks cause agents to revise their forecasts at all horizons, or just at short and mediumterm horizons? (e.g., Campbell and Mankiw, 1987; Cochrane, 1988) Are observed asset returns "too volatile"? (e.g., Shiller, 1979; LeRoy and Porter, 1981) Are asset returns forecastable over long horizons? (e.g., Fama and French, 1988; Mark, 1995)
New Insights Into Smile, Mispricing and Value At Risk: The Hyperbolic Model
 Journal of Business
, 1998
"... We investigate a new basic model for asset pricing, the hyperbolic model, which allows an almost perfect statistical fit of stock return data. After a brief introduction into the theory supported by an appendix we use also secondary market data to compare the hyperbolic model to the classical Black ..."
Abstract

Cited by 80 (7 self)
 Add to MetaCart
We investigate a new basic model for asset pricing, the hyperbolic model, which allows an almost perfect statistical fit of stock return data. After a brief introduction into the theory supported by an appendix we use also secondary market data to compare the hyperbolic model to the classical BlackScholes model. We study implicit volatilities, the smile effect and the pricing performance. Exploiting the full power of the hyperbolic model, we construct an option value process from a statistical point of view by estimating the implicit riskneutral density function from option data. Finally we present some new valueat risk calculations leading to new perspectives to cope with model risk. I Introduction There is little doubt that the BlackScholes model has become the standard in the finance industry and is applied on a large scale in everyday trading operations. On the other side its deficiencies have become a standard topic in research. Given the vast literature where refinements a...
The Dynamics of Stochastic Volatility: Evidence from Underlying and Option Markets
, 2000
"... This paper proposes and estimates a more general parametric stochastic variance model of equity index returns than has been previously considered using data from both underlying and options markets. The parameters of the model under both the objective and riskneutral measures are estimated simultane ..."
Abstract

Cited by 72 (1 self)
 Add to MetaCart
This paper proposes and estimates a more general parametric stochastic variance model of equity index returns than has been previously considered using data from both underlying and options markets. The parameters of the model under both the objective and riskneutral measures are estimated simultaneously. I conclude that the square root stochastic variance model of Heston (1993) and others is incapable of generating realistic returns behavior and find that the data are more accurately represented by a stochastic variance model in the CEV class or a model that allows the price and variance processes to have a timevarying correlation. Specifically, I find that as the level of market variance increases, the volatility of market variance increases rapidly and the correlation between the price and variance processes becomes substantially more negative. The heightened heteroskedasticity in market variance that results generates realistic crash probabilities and dynamics and causes returns to display values of skewness and kurtosis much more consistent with their sample values. While the model dramatically improves the fit of options prices relative to the square root process, it falls short of explaining the implied volatility smile for shortdated options.