Results 1  10
of
420
Multiparty Communication Complexity
, 1989
"... A given Boolean function has its input distributed among many parties. The aim is to determine which parties to tMk to and what information to exchange with each of them in order to evaluate the function while minimizing the total communication. This paper shows that it is possible to obtain the Boo ..."
Abstract

Cited by 614 (21 self)
 Add to MetaCart
A given Boolean function has its input distributed among many parties. The aim is to determine which parties to tMk to and what information to exchange with each of them in order to evaluate the function while minimizing the total communication. This paper shows that it is possible to obtain the Boolean answer deterministically with only a polynomial increase in communication with respect to the information lower bound given by the nondeterministic communication complexity of the function.
Entity Authentication and Key Distribution
, 1993
"... Entity authentication and key distribution are central cryptographic problems in distributed computing  but up until now, they have lacked even a meaningful definition. One consequence is that incorrect and inefficient protocols have proliferated. This paper provides the first treatment of these p ..."
Abstract

Cited by 463 (13 self)
 Add to MetaCart
Entity authentication and key distribution are central cryptographic problems in distributed computing  but up until now, they have lacked even a meaningful definition. One consequence is that incorrect and inefficient protocols have proliferated. This paper provides the first treatment of these problems in the complexitytheoretic framework of modern cryptography. Addressed in detail are two problems of the symmetric, twoparty setting: mutual authentication and authenticated key exchange. For each we present a definition, protocol, and proof that the protocol meets its goal, assuming the (minimal) assumption of pseudorandom function. When this assumption is appropriately instantiated, the protocols given are practical and efficient.
Security and Composition of Multiparty Cryptographic Protocols
 JOURNAL OF CRYPTOLOGY
, 1998
"... We present general definitions of security for multiparty cryptographic protocols, with focus on the task of evaluating a probabilistic function of the parties' inputs. We show that, with respect to these definitions, security is preserved under a natural composition operation. The definitions f ..."
Abstract

Cited by 389 (18 self)
 Add to MetaCart
We present general definitions of security for multiparty cryptographic protocols, with focus on the task of evaluating a probabilistic function of the parties' inputs. We show that, with respect to these definitions, security is preserved under a natural composition operation. The definitions follow the general paradigm of known definitions; yet some substantial modifications and simplifications are introduced. The composition operation is the natural `subroutine substitution' operation, formalized by Micali and Rogaway. We consider several standard settings for multiparty protocols, including the cases of eavesdropping, Byzantine, nonadaptive and adaptive adversaries, as well as the informationtheoretic and the computational models. In particular, in the computational model we provide the first definition of security of protocols that is shown to be preserved under composition.
Data Streams: Algorithms and Applications
, 2005
"... In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerg ..."
Abstract

Cited by 375 (21 self)
 Add to MetaCart
In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudorandom computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges. This article is an overview and survey of data stream algorithmics and is an updated version of [175].1
Computational Complexity  A Modern Approach
, 2009
"... Not to be reproduced or distributed without the authors ’ permissioniiTo our wives — Silvia and RavitivAbout this book Computational complexity theory has developed rapidly in the past three decades. The list of surprising and fundamental results proved since 1990 alone could fill a book: these incl ..."
Abstract

Cited by 151 (2 self)
 Add to MetaCart
Not to be reproduced or distributed without the authors ’ permissioniiTo our wives — Silvia and RavitivAbout this book Computational complexity theory has developed rapidly in the past three decades. The list of surprising and fundamental results proved since 1990 alone could fill a book: these include new probabilistic definitions of classical complexity classes (IP = PSPACE and the PCP Theorems) and their implications for the field of approximation algorithms; Shor’s algorithm to factor integers using a quantum computer; an understanding of why current approaches to the famous P versus NP will not be successful; a theory of derandomization and pseudorandomness based upon computational hardness; and beautiful constructions of pseudorandom objects such as extractors and expanders. This book aims to describe such recent achievements of complexity theory in the context of more classical results. It is intended to both serve as a textbook and as a reference for selfstudy. This means it must simultaneously cater to many audiences, and it is carefully designed with that goal. We assume essentially no computational background and very minimal mathematical background, which we review in Appendix A. We have also provided a web site for this book at
COCA: A Secure Distributed Online Certification Authority
 ACM Transactions on Computer Systems
"... this article, is such an online CA ..."
Designated Verifier Proofs and Their Applications
, 1996
"... For many proofs of knowledge it is important that only the verifier designated by the confirmer can obtain any conviction of the correctness of the proof. A good example of such a situation is for undeniable signatures, where the confirmer of a signature wants to make sure that only the intended ver ..."
Abstract

Cited by 134 (5 self)
 Add to MetaCart
For many proofs of knowledge it is important that only the verifier designated by the confirmer can obtain any conviction of the correctness of the proof. A good example of such a situation is for undeniable signatures, where the confirmer of a signature wants to make sure that only the intended verifier(s) in fact can be convinced about the validity or invalidity of the signature. Generally, authentication of messages and offtherecord messages are in conflict with each other. We show how, using designation of verifiers, these notions can be combined, allowing authenticated but private conversations to take place. Our solution guarantees that only the specified verifier can be convinced by the proof, even if he shares all his secret information with entities that want to get convinced. Our solution is based on trapdoor commitments [4], allowing the designated verifier to open up commitments in any way he wants. We demonstrate how a trapdoor commitment scheme can be used to constr...
On Hiding Information from an Oracle
, 1989
"... : We consider the problem of computing with encrypted data. Player A wishes to know the value f(x) for some x but lacks the power to compute it. Player B has the power to compute f and is willing to send f(y) to A if she sends him y, for any y. Informally, an encryption scheme for the problem f is a ..."
Abstract

Cited by 129 (15 self)
 Add to MetaCart
: We consider the problem of computing with encrypted data. Player A wishes to know the value f(x) for some x but lacks the power to compute it. Player B has the power to compute f and is willing to send f(y) to A if she sends him y, for any y. Informally, an encryption scheme for the problem f is a method by which A, using her inferior resources, can transform the cleartext instance x into an encrypted instance y, obtain f(y) from B, and infer f(x) from f(y) in such a way that B cannot infer x from y. When such an encryption scheme exists, we say that f is encryptable. The framework defined in this paper enables us to prove precise statements about what an encrypted instance hides and what it leaks, in an informationtheoretic sense. Our definitions are cast in the language of probability theory and do not involve assumptions such as the intractability of factoring or the existence of oneway functions. We use our framework to describe encryption schemes for some wellknown function...
Privacypreserving set operations
 in Advances in Cryptology  CRYPTO 2005, LNCS
, 2005
"... In many important applications, a collection of mutually distrustful parties must perform private computation over multisets. Each party’s input to the function is his private input multiset. In order to protect these private sets, the players perform privacypreserving computation; that is, no part ..."
Abstract

Cited by 100 (0 self)
 Add to MetaCart
In many important applications, a collection of mutually distrustful parties must perform private computation over multisets. Each party’s input to the function is his private input multiset. In order to protect these private sets, the players perform privacypreserving computation; that is, no party learns more information about other parties ’ private input sets than what can be deduced from the result. In this paper, we propose efficient techniques for privacypreserving operations on multisets. By employing the mathematical properties of polynomials, we build a framework of efficient, secure, and composable multiset operations: the union, intersection, and element reduction operations. We apply these techniques to a wide range of practical problems, achieving more efficient results than those of previous work.
Secure multiparty computation of approximations
, 2001
"... Approximation algorithms can sometimes provide efficient solutions when no efficient exact computation is known. In particular, approximations are often useful in a distributed setting where the inputs are held by different parties and may be extremely large. Furthermore, for some applications, the ..."
Abstract

Cited by 98 (24 self)
 Add to MetaCart
Approximation algorithms can sometimes provide efficient solutions when no efficient exact computation is known. In particular, approximations are often useful in a distributed setting where the inputs are held by different parties and may be extremely large. Furthermore, for some applications, the parties want to compute a function of their inputs securely, without revealing more information than necessary. In this work we study the question of simultaneously addressing the above efficiency and security concerns via what we call secure approximations. We start by extending standard definitions of secure (exact) computation to the setting of secure approximations. Our definitions guarantee that no additional information is revealed by the approximation beyond what follows from the output of the function being approximated. We then study the complexity of specific secure approximation problems. In particular, we obtain a sublinearcommunication protocol for securely approximating the Hamming distance and a polynomialtime protocol for securely approximating the permanent and related #Phard problems. 1