Results 1  10
of
195
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion of objects ..."
Abstract

Cited by 508 (37 self)
 Add to MetaCart
A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion of objects and split management, whF h keep th Mtree always balanced  severalheralvFV split alternatives are considered and experimentally evaluated. Algorithd for similarity (range and knearest neigh bors) queries are also described. Results from extensive experimentationwith a prototype system are reported, considering as th performance criteria th number of page I/O's and th number of distance computations. Th results demonstratethm th Mtree indeed extendsth domain of applicability beyond th traditional vector spaces, performs reasonably well inhE[94Kv#E44V[vh data spaces, and scales well in case of growing files. 1
A Quantitative Analysis and Performance Study for SimilaritySearch Methods in HighDimensional Spaces
, 1998
"... For similarity search in highdimensional vector spaces (or `HDVSs'), researchers have proposed a number of new methods (or adaptations of existing methods) based, in the main, on dataspace partitioning. However, the performance of these methods generally degrades as dimensionality increases. Altho ..."
Abstract

Cited by 487 (12 self)
 Add to MetaCart
For similarity search in highdimensional vector spaces (or `HDVSs'), researchers have proposed a number of new methods (or adaptations of existing methods) based, in the main, on dataspace partitioning. However, the performance of these methods generally degrades as dimensionality increases. Although this phenomenonknown as the `dimensional curse'is well known, little or no quantitative analysis of the phenomenon is available. In this paper, we provide a detailed analysis of partitioning and clustering techniques for similarity search in HDVSs. We show formally that these methods exhibit linear complexity at high dimensionality, and that existing methods are outperformed on average by a simple sequential scan if the number of dimensions exceeds around 10. Consequently, we come up with an alternative organization based on approximations to make the unavoidable sequential scan as fast as possible. We describe a simple vector approximation scheme, called VAfile, and report on an ...
Nearest Neighbor Queries
, 1995
"... A frequently encountered type of query in Geographic Information Systems is to find the k nearest neighbor objects to a given point in space. Processing such queries requires substantially different search algorithms than those for location or range queries. In this paper we present an efficient bra ..."
Abstract

Cited by 482 (1 self)
 Add to MetaCart
A frequently encountered type of query in Geographic Information Systems is to find the k nearest neighbor objects to a given point in space. Processing such queries requires substantially different search algorithms than those for location or range queries. In this paper we present an efficient branchandbound Rtree traversal algorithm to find the nearest neighbor object to a point, and then generalize it to finding the k nearest neighbors. We also discuss metrics for an optimistic and a pessimistic search ordering strategy as well as for pruning. Finally, we present the results of several experiments obtained using the implementation of our algorithm and examine the behavior of the metrics and the scalability of the algorithm.
Generalized Search Trees for Database Systems
 IN PROC. 21 ST INTERNATIONAL CONFERENCE ON VLDB
, 1995
"... This paper introduces the Generalized Search Tree (GiST), an index structure supporting an extensible set of queries and data types. The GiST allows new data types to be indexed in a manner supporting queries natural to the types; this is in contrast to previous work on tree extensibility which only ..."
Abstract

Cited by 205 (19 self)
 Add to MetaCart
This paper introduces the Generalized Search Tree (GiST), an index structure supporting an extensible set of queries and data types. The GiST allows new data types to be indexed in a manner supporting queries natural to the types; this is in contrast to previous work on tree extensibility which only supported the traditional set of equality and range predicates. In a single data structure, the GiST provides all the basic search tree logic required by a database system, thereby unifying disparate structures such as B+trees and Rtrees in a single piece of code, and opening the application of search trees to general extensibility. To illustrate the exibility of the GiST, we provide simple method implementations that allow it to behave like a B+tree, an Rtree, and an RDtree, a new index for data with setvalued attributes. We also present a preliminary performance analysis of RDtrees, which leads to discussion on the nature of tree indices and how they behave for various datasets.
On Indexing Mobile Objects
, 1999
"... We show how to index mobile objects in one and two dimensions using efficient dynamic external memory data structures. The problem is motivated by real life applications in traffic monitoring, intelligent navigation and mobile communications domains. For the 1dimensional case, we give (i) a dynamic ..."
Abstract

Cited by 200 (14 self)
 Add to MetaCart
We show how to index mobile objects in one and two dimensions using efficient dynamic external memory data structures. The problem is motivated by real life applications in traffic monitoring, intelligent navigation and mobile communications domains. For the 1dimensional case, we give (i) a dynamic, external memory algorithm with guaranteed worst case performance and linear space and (ii) a practical approximation algorithm also in the dynamic, external memory setting, which has linear space and expected logarithmic query time. We also give an algorithm with guaranteed logarithmic query time for a restricted version of the problem. We present extensions of our techniques to two dimensions. In addition we give a lower bound on the number of I/O's needed to answer the ddimensional problem. Initial experimental results and comparisons to traditional indexing approaches are also included. 1 Introduction Traditional database management systems assume that data stored in the database rem...
Progressive Skyline Computation in Database Systems
 ACM Trans. Database Syst
, 2005
"... The skyline of a ddimensional dataset contains the points that are not dominated by any other point on all dimensions. Skyline computation has recently received considerable attention in the database community, especially for progressive methods that can quickly return the initial results without r ..."
Abstract

Cited by 129 (12 self)
 Add to MetaCart
The skyline of a ddimensional dataset contains the points that are not dominated by any other point on all dimensions. Skyline computation has recently received considerable attention in the database community, especially for progressive methods that can quickly return the initial results without reading the entire database. All the existing algorithms, however, have some serious shortcomings which limit their applicability in practice. In this article we develop branchandbound skyline (BBS), an algorithm based on nearestneighbor search, which is I/O optimal, that is, it performs a single access only to those nodes that may contain skyline points. BBS is simple to implement and supports all types of progressive processing (e.g., user preferences, arbitrary dimensionality, etc). Furthermore, we propose several interesting variations of skyline computation, and show how BBS can be applied for their efficient processing.
A Simple Algorithm for Nearest Neighbor Search in High Dimensions
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1997
"... Abstractâ€”The problem of finding the closest point in highdimensional spaces is common in pattern recognition. Unfortunately, the complexity of most existing search algorithms, such as kd tree and Rtree, grows exponentially with dimension, making them impractical for dimensionality above 15. In ne ..."
Abstract

Cited by 126 (1 self)
 Add to MetaCart
Abstractâ€”The problem of finding the closest point in highdimensional spaces is common in pattern recognition. Unfortunately, the complexity of most existing search algorithms, such as kd tree and Rtree, grows exponentially with dimension, making them impractical for dimensionality above 15. In nearly all applications, the closest point is of interest only if it lies within a userspecified distance e. We present a simple and practical algorithm to efficiently search for the nearest neighbor within Euclidean distance e. The use of projection search combined with a novel data structure dramatically improves performance in high dimensions. A complexity analysis is presented which helps to automatically determine e in structured problems. A comprehensive set of benchmarks clearly shows the superiority of the proposed algorithm for a variety of structured and unstructured search problems. Object recognition is demonstrated as an example application. The simplicity of the algorithm makes it possible to construct an inexpensive hardware search engine which can be 100 times faster than its software equivalent. A C++ implementation of our algorithm is available upon request to search@cs.columbia.edu/CAVE/.
Distancebased indexing for highdimensional metric spaces
 In Proc. ACM SIGMOD International Conference on Management of Data
, 1997
"... In many database applications, one of the common queries is to find approximate matches to a given query item from a collection of data items. For example, given an image database, one may want to retrieve all images that are similar to a given query image. Distance based index structures are propos ..."
Abstract

Cited by 116 (3 self)
 Add to MetaCart
In many database applications, one of the common queries is to find approximate matches to a given query item from a collection of data items. For example, given an image database, one may want to retrieve all images that are similar to a given query image. Distance based index structures are proposed for applications where the data domain is high dimensional, or the distance function used to compute distances between data objects is nonEuclidean. In this paper, we introduce a distance based index structure called multivantage point (mvp) tree for similarity queries on highdimensional metric spaces. The mvptree uses more than one vantage point to partition the space into spherical cuts at each level. It also utilizes the precomputed (at construction time) distances between the data points and the vantage points. We have done experiments to compare mvptrees with vptrees which have a similar partitioning strategy, but use only one vantage point at each level, and do not make use of the precomputed distances. Empirical studies show that mvptree outperforms the vptree 20 % to 80 % for varying query ranges and different distance distributions. 1.
Continuous Nearest Neighbor Search
, 2002
"... A continuous nearest neighbor query retrieves the nearest neighbor (NN) of every point on a line segment (e.g., "find all my nearest gas stations during my route from point s to point e"). The result contains a set of tuples, such that point is the NN of all points in the cor ..."
Abstract

Cited by 113 (9 self)
 Add to MetaCart
A continuous nearest neighbor query retrieves the nearest neighbor (NN) of every point on a line segment (e.g., "find all my nearest gas stations during my route from point s to point e"). The result contains a set of <point, interval> tuples, such that point is the NN of all points in the corresponding interval. Existing methods for continuous nearest neighbor search are based on the repetitive application of simple NN algorithms, which incurs significant overhead. In this paper we propose techniques that solve the problem by performing a single query for the whole input segment. As a result the cost, depending on the query and dataset characteristics, may drop by orders of magnitude.
Automatic Multimedia Crossmodal Correlation Discovery
, 2004
"... Given an image (or video clip, or audio song), how do we automatically assign keywords to it? The general problem is to find correlations across the media in a collection of multimedia objects like video clips, with colors, and/or motion, and/or audio, and/or text scripts. We propose a novel, graph ..."
Abstract

Cited by 100 (16 self)
 Add to MetaCart
Given an image (or video clip, or audio song), how do we automatically assign keywords to it? The general problem is to find correlations across the media in a collection of multimedia objects like video clips, with colors, and/or motion, and/or audio, and/or text scripts. We propose a novel, graphbased approach, "MMG", to discover such crossmodal correlations. Our