Results 1 
1 of
1
Semantic foundations of concurrent constraint programming
, 1990
"... Concurrent constraint programming [Sar89,SR90] is a simple and powerful model of concurrent computation based on the notions of storeasconstraint and process as information transducer. The storeasvaluation conception of von Neumann computing is replaced by the notion that the store is a constr ..."
Abstract

Cited by 273 (27 self)
 Add to MetaCart
Concurrent constraint programming [Sar89,SR90] is a simple and powerful model of concurrent computation based on the notions of storeasconstraint and process as information transducer. The storeasvaluation conception of von Neumann computing is replaced by the notion that the store is a constraint (a finite representation of a possibly infinite set of valuations) which provides partial information about the possible values that variables can take. Instead of “reading” and “writing ” the values of variables, processes may now ask (check if a constraint is entailed by the store) and tell (augment the store with a new constraint). This is a very general paradigm which subsumes (among others) nondeterminate dataflow and the (concurrent) (constraint) logic programming languages. This paper develops the basic ideas involved in giving a coherent semantic account of these languages. Our first contribution is to give a simple and general formulation of the notion that a constraint system is a system of partial information (a la the information systems of Scott). Parameter passing and hiding is handled by borrowing ideas from the cylindric algebras of Henkin, Monk and Tarski to introduce diagonal elements and “cylindrification ” operations (which mimic the projection of information induced by existential quantifiers). The se;ond contribution is to introduce the notion of determinate concurrent constraint programming languages. The combinators treated are ask, tell, parallel composition, hiding and recursion. We present a simple model for this language based on the specificationoriented methodology of [OH86]. The crucial insight is to focus on observing the resting points of a process—those stores in which the process quiesces without producing more information. It turns out that for the determinate language, the set of resting points of a process completely characterizes its behavior on all inputs, since each process can be identified with a closure operator over the underlying constraint system. Very natural definitions of parallel composition, communication and hiding are given. For example, the parallel composition of two agents can be characterized by just the intersection of the sets of constraints associated with them. We also give a complete axiomatization of equality in this model, present