Results 1  10
of
134
Constraint Logic Programming: A Survey
"... Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in differe ..."
Abstract

Cited by 769 (23 self)
 Add to MetaCart
Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in different areas of applications. In this survey of CLP, a primary goal is to give a systematic description of the major trends in terms of common fundamental concepts. The three main parts cover the theory, implementation issues, and programming for applications.
A Generic ArcConsistency Algorithm and its Specializations
 Artificial Intelligence
, 1992
"... Consistency techniques have been studied extensively in the past as a way of tackling constraint satisfaction problems (CSP). In particular, various arcconsistency algorithms have been proposed, originating from Waltz's filtering algorithm [26] and culminating in the optimal algorithm AC4 of Mohr ..."
Abstract

Cited by 190 (7 self)
 Add to MetaCart
Consistency techniques have been studied extensively in the past as a way of tackling constraint satisfaction problems (CSP). In particular, various arcconsistency algorithms have been proposed, originating from Waltz's filtering algorithm [26] and culminating in the optimal algorithm AC4 of Mohr and Henderson [15]. AC4 runs in O(ed 2 ) in the worst case, where e is the number of arcs (or constraints) and d is the size of the largest domain. Being applicable to the whole class of (binary) CSP, these algorithms do not take into account the semantics of constraints. In this paper, we present a new generic arcconsistency algorithm AC5. This algorithm is parametrized on two specified procedures and can be instantiated to reduce to AC3 and AC4. More important, AC5 can be instantiated to produce an O(ed) algorithm for a number of important classes of constraints: functional, antifunctional, monotonic and their generalization to (functional, antifunctional, and monotonic) piecewise constraints. We also show that AC5 has an important application in constraint logic programming over finite domains [23]. The kernel of the constraint solver for such a programming language is an arcconsistency algorithm for a set of basic constraints. We prove that AC5, in conjunction with node consistency, provides a decision procedure for these constraints running in time O(ed).
An OpenEnded Finite Domain Constraint Solver
, 1997
"... We describe the design and implementation of a finite domain constraint solver embedded in a Prolog system using an extended unification mechanism via attributed variables as a generic constraint interface. The solver is essentially a scheduler for indexicals, i.e. reactive functional rules encodin ..."
Abstract

Cited by 154 (6 self)
 Add to MetaCart
We describe the design and implementation of a finite domain constraint solver embedded in a Prolog system using an extended unification mechanism via attributed variables as a generic constraint interface. The solver is essentially a scheduler for indexicals, i.e. reactive functional rules encoding local consistency methods performing incremental constraint solving or entailment checking, and global constraints, i.e. general propagators which may use specialized algorithms to achieve a higher degree of consistency or better time and space complexity. The solver has an openended design: the user can introduce new constraints, either in terms of indexicals by writing rules in a functional notation, or as global constraints via a Prolog programming interface. Constraints defined in terms of indexicals can be linked to 0/1variables modeling entailment; thus indexicals are used for constraint solving as well as for entailment testing. Constraints can be arbitrarily combined using the ...
Compiling Constraints in clp(FD)
, 1996
"... We present the clp(FD) system: a Constraint Logic Programming language with finite domain constraints... ..."
Abstract

Cited by 147 (19 self)
 Add to MetaCart
We present the clp(FD) system: a Constraint Logic Programming language with finite domain constraints...
CLP(Intervals) Revisited
, 1994
"... The design and implementation of constraint logic programming (CLP) languages over intervals is revisited. Instead of decomposing complex constraints in terms of simple primitive constraints as in CLP(BNR), complex constraints are manipulated as a whole, enabling more sophisticated narrowing procedu ..."
Abstract

Cited by 121 (18 self)
 Add to MetaCart
The design and implementation of constraint logic programming (CLP) languages over intervals is revisited. Instead of decomposing complex constraints in terms of simple primitive constraints as in CLP(BNR), complex constraints are manipulated as a whole, enabling more sophisticated narrowing procedures to be applied in the solver. This idea is embodied in a new CLP language Newton whose operational semantics is based on the notion of boxconsistency, an approximation of arcconsistency, and whose implementation uses Newton interval method. Experimental results indicate that Newton outperforms existing languages by an order of magnitude and is competitive with some stateoftheart tools on some standard benchmarks. Limitations of our current implementation and directions for further work are also identified.
Practical Applications of Constraint Programming
 CONSTRAINTS
, 1996
"... Constraint programming is newly flowering in industry. Several companies have recently started up to exploit the technology, and the number of industrial applications is now growing very quickly. This survey will seek, by examples, ..."
Abstract

Cited by 105 (1 self)
 Add to MetaCart
Constraint programming is newly flowering in industry. Several companies have recently started up to exploit the technology, and the number of industrial applications is now growing very quickly. This survey will seek, by examples,
Solving Polynomial Systems Using a Branch and Prune Approach
 SIAM Journal on Numerical Analysis
, 1997
"... This paper presents Newton, a branch & prune algorithm to find all isolated solutions of a system of polynomial constraints. Newton can be characterized as a global search method which uses intervals for numerical correctness and for pruning the search space early. The pruning in Newton consists in ..."
Abstract

Cited by 101 (7 self)
 Add to MetaCart
This paper presents Newton, a branch & prune algorithm to find all isolated solutions of a system of polynomial constraints. Newton can be characterized as a global search method which uses intervals for numerical correctness and for pruning the search space early. The pruning in Newton consists in enforcing at each node of the search tree a unique local consistency condition, called boxconsistency, which approximates the notion of arcconsistency wellknown in artificial intelligence. Boxconsistency is parametrized by an interval extension of the constraint and can be instantiated to produce the HansenSegupta's narrowing operator (used in interval methods) as well as new operators which are more effective when the computation is far from a solution. Newton has been evaluated on a variety of benchmarks from kinematics, chemistry, combustion, economics, and mechanics. On these benchmarks, it outperforms the interval methods we are aware of and compares well with stateoftheart continuation methods. Limitations of Newton (e.g., a sensitivity to the size of the initial intervals on some problems) are also discussed. Of particular interest is the mathematical and programming simplicity of the method.
The Complexity of Global Constraints
, 2004
"... We study the computational complexity of reasoning with global constraints. We show that reasoning with such constraints is intractable in general. We then demonstrate how the same tools of computational complexity can be used in the design and analysis of specific global constraints. In particular ..."
Abstract

Cited by 64 (23 self)
 Add to MetaCart
We study the computational complexity of reasoning with global constraints. We show that reasoning with such constraints is intractable in general. We then demonstrate how the same tools of computational complexity can be used in the design and analysis of specific global constraints. In particular, we illustrate how computational complexity can be used to determine when a lesser level of local consistency should be enforced, when decomposing constraints will lose pruning, and when combining constraints is tractable. We also show how the same tools can be used to study symmetry breaking, metaconstraints like the cardinality constraint, and learning nogoods.
Parallel Execution of Prolog Programs: A Survey
"... Since the early days of logic programming, researchers in the field realized the potential for exploitation of parallelism present in the execution of logic programs. Their highlevel nature, the presence of nondeterminism, and their referential transparency, among other characteristics, make logic ..."
Abstract

Cited by 62 (24 self)
 Add to MetaCart
Since the early days of logic programming, researchers in the field realized the potential for exploitation of parallelism present in the execution of logic programs. Their highlevel nature, the presence of nondeterminism, and their referential transparency, among other characteristics, make logic programs interesting candidates for obtaining speedups through parallel execution. At the same time, the fact that the typical applications of logic programming frequently involve irregular computations, make heavy use of dynamic data structures with logical variables, and involve search and speculation, makes the techniques used in the corresponding parallelizing compilers and runtime systems potentially interesting even outside the field. The objective of this paper is to provide a comprehensive survey of the issues arising in parallel execution of logic programming languages along with the most relevant approaches explored to date in the field. Focus is mostly given to the challenges emerging from the parallel execution of Prolog programs. The paper describes the major techniques used for shared memory implementation of Orparallelism, Andparallelism, and combinations of the two. We also explore some related issues, such as memory
A Foundation for Higherorder Concurrent Constraint Programming
, 1994
"... We present the flcalculus, a computational calculus for higherorder concurrent programming. The calculus can elegantly express higherorder functions (both eager and lazy) and concurrent objects with encapsulated state and multiple inheritance. The primitives of the flcalculus are logic variables ..."
Abstract

Cited by 60 (13 self)
 Add to MetaCart
We present the flcalculus, a computational calculus for higherorder concurrent programming. The calculus can elegantly express higherorder functions (both eager and lazy) and concurrent objects with encapsulated state and multiple inheritance. The primitives of the flcalculus are logic variables, names, procedural abstraction, and cells. Cells provide a notion of state that is fully compatible with concurrency and constraints. Although it does not have a dedicated communication primitive, the flcalculus can elegantly express onetomany and manytoone communication. There is an interesting relationship between the flcalculus and the ßcalculus: The flcalculus is subsumed by a calculus obtained by extending the asynchronous and polyadic ßcalculus with logic variables. The flcalculus can be extended with primitives providing for constraintbased problem solving in the style of logic programming. A such extended flcalculus has the remarkable property that it combines firstor...