Results 1  10
of
30
A logic programming language with lambdaabstraction, function variables, and simple unification
 Extensions of Logic Programming. Springer Lecture Notes in Artificial Intelligence
, 1990
"... A meta programming language must be able to represent and manipulate such syntactic structures as programs, formulas, types, and proofs. A common characteristic of all these structures is that they involve notions of abstractions, scope, bound and free variables, substitution instances, and equality ..."
Abstract

Cited by 291 (24 self)
 Add to MetaCart
A meta programming language must be able to represent and manipulate such syntactic structures as programs, formulas, types, and proofs. A common characteristic of all these structures is that they involve notions of abstractions, scope, bound and free variables, substitution instances, and equality up to alphabetic changes of bound variables.
Higherorder logic programming
 HANDBOOK OF LOGIC IN AI AND LOGIC PROGRAMMING, VOLUME 5: LOGIC PROGRAMMING. OXFORD (1998
"... ..."
Implementing Tactics and Tacticals in a HigherOrder Logic Programming Language
 Journal of Automated Reasoning
, 1993
"... We argue that a logic programming language with a higherorder intuitionistic logic as its foundation can be used both to naturally specify and implement tactic style theorem provers. The language extends traditional logic programming languages by replacing firstorder terms with simplytyped terms ..."
Abstract

Cited by 66 (11 self)
 Add to MetaCart
We argue that a logic programming language with a higherorder intuitionistic logic as its foundation can be used both to naturally specify and implement tactic style theorem provers. The language extends traditional logic programming languages by replacing firstorder terms with simplytyped terms, replacing firstorder unification with higherorder unification, and allowing implication and universal quantification in queries and the bodies of clauses. Inference rules for a variety of inference systems can be naturally specified in this language. The higherorder features of the language contribute to a concise specification of provisos concerning variable occurrences in formulas and the discharge of assumptions present in many inference systems. Tactics and tacticals, which provide a framework for highlevel control over search for proofs, can be directly and naturally implemented in the extended language. This framework serves as a starting point for implementing theorem provers an...
Unification of simply typed lambdaterms as logic programming
 In Eighth International Logic Programming Conference
, 1991
"... The unification of simply typed λterms modulo the rules of β and ηconversions is often called “higherorder ” unification because of the possible presence of variables of functional type. This kind of unification is undecidable in general and if unifiers exist, most general unifiers may not exist ..."
Abstract

Cited by 56 (3 self)
 Add to MetaCart
The unification of simply typed λterms modulo the rules of β and ηconversions is often called “higherorder ” unification because of the possible presence of variables of functional type. This kind of unification is undecidable in general and if unifiers exist, most general unifiers may not exist. In this paper, we show that such unification problems can be coded as a query of the logic programming language Lλ in a natural and clear fashion. In a sense, the translation only involves explicitly axiomatizing in Lλ the notions of equality and substitution of the simply typed λcalculus: the rest of the unification process can be viewed as simply an interpreter of Lλ searching for proofs using those axioms. 1
Explaining Type Inference
 Science of Computer Programming
, 1995
"... Type inference is the compiletime process of reconstructing missing type information in a program based on the usage of its variables. ML and Haskell are two languages where this aspect of compilation has enjoyed some popularity, allowing type information to be omitted while static type checking is ..."
Abstract

Cited by 53 (0 self)
 Add to MetaCart
Type inference is the compiletime process of reconstructing missing type information in a program based on the usage of its variables. ML and Haskell are two languages where this aspect of compilation has enjoyed some popularity, allowing type information to be omitted while static type checking is still performed. Type inference may be expected to have some application in the prototyping and scripting languages which are becoming increasingly popular. A difficulty with type inference is the confusing and sometimes counterintuitive diagnostics produced by the type checker as a result of type errors. A modification of the HindleyMilner type inference algorithm is presented, which allows the specific reasoning which led to a program variable having a particular type to be recorded for type explanation. This approach is close to the intuitive process used in practice for debugging type errors. 1 Introduction Type inference refers to the compiletime process of reconstructing missing t...
Interactive Drama, Art and Artificial Intelligence
, 2002
"... This research was funded in part through fellowships from the Litton and Intel Corporations. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect those of the sponsors. ..."
Abstract

Cited by 45 (5 self)
 Add to MetaCart
This research was funded in part through fellowships from the Litton and Intel Corporations. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect those of the sponsors.
Practical RefinementType Checking
, 1997
"... Refinement types allow many more properties of programs to be expressed and statically checked than conventional type systems. We present a practical algorithm for refinementtype checking in a calculus enriched with refinementtype annotations. We prove that our basic algorithm is sound and comple ..."
Abstract

Cited by 34 (1 self)
 Add to MetaCart
Refinement types allow many more properties of programs to be expressed and statically checked than conventional type systems. We present a practical algorithm for refinementtype checking in a calculus enriched with refinementtype annotations. We prove that our basic algorithm is sound and complete, and show that every term which has a refinement type can be annotated as required by our algorithm. Our positive experience with an implementation of an extension of this algorithm to the full core language of Standard ML demonstrates that refinement types can be a practical program development tool in a realistic programming language. The required refinement type definitions and annotations are not much of a burden and serve as formal, machinechecked explanations of code invariants which otherwise would remain implicit. 1 Introduction The advantages of staticallytyped programming languages are well known, and have been described many times (e.g. see [Car97]). However, conventional ty...
A Proof Procedure for the Logic of Hereditary Harrop Formulas
 JOURNAL OF AUTOMATED REASONING
, 1993
"... A proof procedure is presented for a class of formulas in intuitionistic logic. These formulas are the socalled goal formulas in the theory of hereditary Harrop formulas. Proof search inintuitionistic logic is complicated by the nonexistence of a Herbrandlike theorem for this logic: formulas cann ..."
Abstract

Cited by 30 (12 self)
 Add to MetaCart
A proof procedure is presented for a class of formulas in intuitionistic logic. These formulas are the socalled goal formulas in the theory of hereditary Harrop formulas. Proof search inintuitionistic logic is complicated by the nonexistence of a Herbrandlike theorem for this logic: formulas cannot in general be preprocessed into a form such as the clausal form and the construction of a proof is often sensitive to the order in which the connectives and quantifiers are analyzed. An interesting aspect of the formulas we consider here is that this analysis can be carried out in a relatively controlled manner in their context. In particular, the task of finding a proof can be reduced to one of demonstrating that a formula follows from a set of assumptions with the next step in this process being determined by the structure of the conclusion formula. An acceptable implementation of this observation must utilize unification. However, since our formulas may contain universal and existential quantifiers in mixed order, care must be exercised to ensure the correctness of unification. One way of realizing this requirement involves labelling constants and variables and then using these labels to constrain unification. This form of unification is presented and used in a proof procedure for goal formulas in a firstorder version of hereditary Harrop formulas. Modifications to this procedure for the relevant formulas in a higherorder logic are also described. The proof procedure that we present has a practical value in that it provides the basis for an implementation of the logic programming language lambdaProlog.
Scoping Constructs In Logic Programming: Implementation Problems And Their Solution
, 1995
"... Machine (WAM). The provision of implications in goals results in the possibility of program clauses being added to the program for the purpose of solving specific subgoals. A naive scheme based on asserting and retracting program clauses does not suffice for implementing such additions for two reaso ..."
Abstract

Cited by 21 (9 self)
 Add to MetaCart
Machine (WAM). The provision of implications in goals results in the possibility of program clauses being added to the program for the purpose of solving specific subgoals. A naive scheme based on asserting and retracting program clauses does not suffice for implementing such additions for two reasons. First, it is necessary to also support the resurrection of an earlier existing program in the face of backtracking. Second, the possibility for implication goals to be surrounded by quantifiers requires a consideration of the parameterization of program clauses by bindings for their free variables. Devices for supporting these additional requirements are described as also is the integration of these devices into the WAM. Further extensions to the machine are outlined for handling higherorder additions to the language. The ideas Work on this paper has been partially supported by NSF Grants CCR8905825 and CCR 9208465. Address correspondence to Gopalan Nadathur, Department of Compute...
Generation of IdeologicallyBiased Historical Documentaries
 In Proceedings of AAAI 2000
, 2000
"... documentary histories in response to audience feedback. The audience answers multiplechoice questions via an applause meter. The answers to these questions influence which historical events are chosen from a knowledge base, how these events will be slanted to embody the bias implied in the aud ..."
Abstract

Cited by 21 (8 self)
 Add to MetaCart
documentary histories in response to audience feedback. The audience answers multiplechoice questions via an applause meter. The answers to these questions influence which historical events are chosen from a knowledge base, how these events will be slanted to embody the bias implied in the audience's answers, and how the events will be connected together to form a historical narrative. Terminal Time's architecture consists of a knowledge base and inference engine for querying the knowledge base, ideological goal trees and rhetorical devices which represent the current bias, a natural language generator to turn the constructed history into narrative prose, and an indexed multimedia database used to sequence video against the narration.