Results 1 
3 of
3
Maximum Flows and Parametric Shortest Paths in Planar Graphs
"... We observe that the classical maximum flow problem in any directed planar graph G can be reformulated as a parametric shortest path problem in the oriented dual graph G ∗. This reformulation immediately suggests an algorithm to compute maximum flows, which runs in O(n log n) time. As we continuously ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
We observe that the classical maximum flow problem in any directed planar graph G can be reformulated as a parametric shortest path problem in the oriented dual graph G ∗. This reformulation immediately suggests an algorithm to compute maximum flows, which runs in O(n log n) time. As we continuously increase the parameter, each change in the shortest path tree can be effected in O(log n) time using standard dynamic tree data structures, and the special structure of the parametrization implies that each directed edge enters the evolving shortest path tree at most once. The resulting maximumflow algorithm is identical to the recent algorithm of Borradaile and Klein [J. ACM 2009], but our new formulation allows a simpler presentation and analysis. On the other hand, we demonstrate that for a similarly structured parametric shortest path problem on the torus, the shortest path tree can change Ω(n²) times in the worst case, suggesting that a different method may be required to efficiently compute maximum flows in highergenus graphs.
Multiplesource shortest paths in embedded graphs
, 2012
"... Let G be a directed graph with n vertices and nonnegative weights in its directed edges, embedded on a surface of genus g, and let f be an arbitrary face of G. We describe an algorithm to preprocess the graph in O(gn log n) time, so that the shortestpath distance from any vertex on the boundary of ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
Let G be a directed graph with n vertices and nonnegative weights in its directed edges, embedded on a surface of genus g, and let f be an arbitrary face of G. We describe an algorithm to preprocess the graph in O(gn log n) time, so that the shortestpath distance from any vertex on the boundary of f to any other vertex in G can be retrieved in O(log n) time. Our result directly generalizes the O(n log n)time algorithm of Klein [Multiplesource shortest paths in planar graphs. In Proc. 16th Ann. ACMSIAM Symp. Discrete Algorithms, 2005] for multiplesource shortest paths in planar graphs. Intuitively, our preprocessing algorithm maintains a shortestpath tree as its source point moves continuously around the boundary of f. As an application of our algorithm, we describe algorithms to compute a shortest noncontractible or nonseparating cycle in embedded, undirected graphs in O(g² n log n) time.
MultipleSource Shortest Paths in Embedded Graphs ∗
, 2012
"... Let G be a directed graph with n vertices and nonnegative weights in its directed edges, embedded on a surface of genus g, and let f be an arbitrary face of G. We describe an algorithm to preprocess the graph in O(gn log n) time, so that the shortestpath distance from any vertex on the boundary of ..."
Abstract
 Add to MetaCart
Let G be a directed graph with n vertices and nonnegative weights in its directed edges, embedded on a surface of genus g, and let f be an arbitrary face of G. We describe an algorithm to preprocess the graph in O(gn log n) time, so that the shortestpath distance from any vertex on the boundary of f to any other vertex in G can be retrieved in O(log n) time. Our result directly generalizes the O(n log n)time algorithm of Klein [Multiplesource shortest paths in planar graphs. In Proc. 16th Ann. ACMSIAM Symp. Discrete Algorithms, 2005] for multiplesource shortest paths in planar graphs. Intuitively, our preprocessing algorithm maintains a shortestpath tree as its source point moves continuously around the boundary of f. As an application of our algorithm, we describe algorithms to compute a shortest noncontractible or nonseparating cycle in embedded, undirected graphs in O(g 2 n log n) time.