Results 1  10
of
47
Voronoi Diagrams and Delaunay Triangulations
 Computing in Euclidean Geometry
, 1992
"... The Voronoi diagram is a fundamental structure in computationalgeometry and arises naturally in many different fields. This chapter surveys properties of the Voronoi diagram and its geometric dual, the Delaunay triangulation. The emphasis is on practical algorithms for the construction of Voronoi ..."
Abstract

Cited by 198 (3 self)
 Add to MetaCart
The Voronoi diagram is a fundamental structure in computationalgeometry and arises naturally in many different fields. This chapter surveys properties of the Voronoi diagram and its geometric dual, the Delaunay triangulation. The emphasis is on practical algorithms for the construction of Voronoi diagrams. 1 Introduction Let S be a set of n points in ddimensional euclidean space E d . The points of S are called sites. The Voronoi diagram of S splits E d into regions with one region for each site, so that the points in the region for site s2S are closer to s than to any other site in S. The Delaunay triangulation of S is the unique triangulation of S so that there are no elements of S inside the circumsphere of any triangle. Here `triangulation' is extended from the planar usage to arbitrary dimension: a triangulation decomposes the convex hull of S into simplices using elements of S as vertices. The existence and uniqueness of the Delaunay triangulation are perhaps not obvio...
Mesh Generation And Optimal Triangulation
, 1992
"... We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some cri ..."
Abstract

Cited by 180 (8 self)
 Add to MetaCart
We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some criterion that measures the size, shape, or number of triangles. We discuss algorithms both for the optimization of triangulations on a fixed set of vertices and for the placement of new vertices (Steiner points). We briefly survey the heuristic algorithms used in some practical mesh generators.
Fast Polygonal Approximation of Terrains and Height Fields
, 1995
"... Several algorithms for approximating terrains and other height fields using polygonal meshes are described, compared, and optimized. These algorithms take a height field as input, typically a rectangular grid of elevation data H(x; y), and approximate it with a mesh of triangles, also known as a tri ..."
Abstract

Cited by 142 (5 self)
 Add to MetaCart
Several algorithms for approximating terrains and other height fields using polygonal meshes are described, compared, and optimized. These algorithms take a height field as input, typically a rectangular grid of elevation data H(x; y), and approximate it with a mesh of triangles, also known as a triangulated irregular network, or TIN. The algorithms attempt to minimize both the error and the number of triangles in the approximation. Applications include fast rendering of terrain data for flight simulation and fitting of surfaces to range data in computer vision. The methods can also be used to simplify multichannel height fields such as textured terrains or planar color images. The most successful method we examine is the greedy insertion algorithm. It begins with a simple triangulation of the domain and, on each pass, finds the input point with highest error in the current approximation and inserts it as a vertex in the triangulation. The mesh is updated either with Delaunay triangul...
Tetrahedral Mesh Generation by Delaunay Refinement
 Proc. 14th Annu. ACM Sympos. Comput. Geom
, 1998
"... Given a complex of vertices, constraining segments, and planar straightline constraining facets in E 3 , with no input angle less than 90 ffi , an algorithm presented herein can generate a conforming mesh of Delaunay tetrahedra whose circumradiustoshortest edge ratios are no greater than two ..."
Abstract

Cited by 115 (7 self)
 Add to MetaCart
Given a complex of vertices, constraining segments, and planar straightline constraining facets in E 3 , with no input angle less than 90 ffi , an algorithm presented herein can generate a conforming mesh of Delaunay tetrahedra whose circumradiustoshortest edge ratios are no greater than two. The sizes of the tetrahedra can provably grade from small to large over a relatively short distance. An implementation demonstrates that the algorithm generates excellent meshes, generally surpassing the theoretical bounds, and is effective in eliminating tetrahedra with small or large dihedral angles, although they are not all covered by the theoretical guarantee. 1 Introduction Meshes of triangles or tetrahedra have many applications, including interpolation, rendering, and numerical methods such as the finite element method. Most such applications demand more than just a triangulation of the object or domain being rendered or simulated. To ensure accurate results, the triangles or tetr...
Online Routing in Triangulations
 IN PROC. OF THE 10 TH ANNUAL INT. SYMP. ON ALGORITHMS AND COMPUTATION ISAAC
, 1999
"... We consider online routing strategies for routing between the vertices of embedded planar straight line graphs. Our results include (1) two deterministic memoryless routing strategies, one that works for all Delaunay triangulations and the other that works for all regular triangulations, (2) a ..."
Abstract

Cited by 108 (10 self)
 Add to MetaCart
We consider online routing strategies for routing between the vertices of embedded planar straight line graphs. Our results include (1) two deterministic memoryless routing strategies, one that works for all Delaunay triangulations and the other that works for all regular triangulations, (2) a randomized memoryless strategy that works for all triangulations, (3) an O(1) memory strategy that works for all convex subdivisions, (4) an O(1) memory strategy that approximates the shortest path in Delaunay triangulations, and (5) theoretical and experimental results on the competitiveness of these strategies.
Delaunay Refinement Algorithms for Triangular Mesh Generation
 Computational Geometry: Theory and Applications
, 2001
"... Delaunay refinement is a technique for generating unstructured meshes of triangles for use in interpolation, the finite element method, and the finite volume method. In theory and practice, meshes produced by Delaunay refinement satisfy guaranteed bounds on angles, edge lengths, the number of tria ..."
Abstract

Cited by 100 (0 self)
 Add to MetaCart
Delaunay refinement is a technique for generating unstructured meshes of triangles for use in interpolation, the finite element method, and the finite volume method. In theory and practice, meshes produced by Delaunay refinement satisfy guaranteed bounds on angles, edge lengths, the number of triangles, and the grading of triangles from small to large sizes. This article presents an intuitive framework for analyzing Delaunay refinement algorithms that unifies the pioneering mesh generation algorithms of L. Paul Chew and Jim Ruppert, improves the algorithms in several minor ways, and most importantly, helps to solve the difficult problem of meshing nonmanifold domains with small angles.
Efficient Exact Arithmetic for Computational Geometry
 In Proc. 9th Annu. ACM Sympos. Comput. Geom
, 1993
"... We experiment with exact integer arithmetic to implement primitives for geometric algorithms. Naive use of exact arithmeticeither modular or multiprecision integerincreases execution time dramatically over the use of floatingpoint arithmetic. By combining tuned multiprecision integer arithmet ..."
Abstract

Cited by 96 (3 self)
 Add to MetaCart
We experiment with exact integer arithmetic to implement primitives for geometric algorithms. Naive use of exact arithmeticeither modular or multiprecision integerincreases execution time dramatically over the use of floatingpoint arithmetic. By combining tuned multiprecision integer arithmetic and a floatingpoint filter based on interval analysis, we can obtain the effect of exact integer arithmetic at a cost close to that of floatingpoint arithmetic. We describe an experimental expression compiler that conveniently packages our techniques. 1 Introduction Geometric algorithms are usually described using exact arithmetic on real numbers (the "real RAM" model). Since no computer provides exact real arithmetic, programmers implementing geometric algorithms must find some substitution. Floatingpoint arithmetic is a common and convenient substitution, but there are no simple techniques that guarantee the reliability of the resulting program[8]. A few algorithms have been analyz...
Image Warping with Scattered Data Interpolation Methods
, 1992
"... Image warping has many applications in art as well as in image processing. Usually, displacements are computed with mathematical functions or by transformations of a triangulation of control points. Here, different approaches based on scattered data interpolation methods are presented. These methods ..."
Abstract

Cited by 75 (3 self)
 Add to MetaCart
Image warping has many applications in art as well as in image processing. Usually, displacements are computed with mathematical functions or by transformations of a triangulation of control points. Here, different approaches based on scattered data interpolation methods are presented. These methods provide smooth deformations with easily controllable behavior. The usefulness and performance of some selected classes of scattered data interpolation methods in this context is analyzed.