Results 1  10
of
60
Mesh Generation And Optimal Triangulation
, 1992
"... We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some cri ..."
Abstract

Cited by 213 (7 self)
 Add to MetaCart
(Show Context)
We survey the computational geometry relevant to finite element mesh generation. We especially focus on optimal triangulations of geometric domains in two and threedimensions. An optimal triangulation is a partition of the domain into triangles or tetrahedra, that is best according to some criterion that measures the size, shape, or number of triangles. We discuss algorithms both for the optimization of triangulations on a fixed set of vertices and for the placement of new vertices (Steiner points). We briefly survey the heuristic algorithms used in some practical mesh generators.
Delaunay Refinement Algorithms for Triangular Mesh Generation
 Computational Geometry: Theory and Applications
, 2001
"... Delaunay refinement is a technique for generating unstructured meshes of triangles for use in interpolation, the finite element method, and the finite volume method. In theory and practice, meshes produced by Delaunay refinement satisfy guaranteed bounds on angles, edge lengths, the number of tria ..."
Abstract

Cited by 173 (0 self)
 Add to MetaCart
(Show Context)
Delaunay refinement is a technique for generating unstructured meshes of triangles for use in interpolation, the finite element method, and the finite volume method. In theory and practice, meshes produced by Delaunay refinement satisfy guaranteed bounds on angles, edge lengths, the number of triangles, and the grading of triangles from small to large sizes. This article presents an intuitive framework for analyzing Delaunay refinement algorithms that unifies the pioneering mesh generation algorithms of L. Paul Chew and Jim Ruppert, improves the algorithms in several minor ways, and most importantly, helps to solve the difficult problem of meshing nonmanifold domains with small angles.
Fast Polygonal Approximation of Terrains and Height Fields
, 1995
"... Several algorithms for approximating terrains and other height fields using polygonal meshes are described, compared, and optimized. These algorithms take a height field as input, typically a rectangular grid of elevation data H(x; y), and approximate it with a mesh of triangles, also known as a tri ..."
Abstract

Cited by 163 (5 self)
 Add to MetaCart
Several algorithms for approximating terrains and other height fields using polygonal meshes are described, compared, and optimized. These algorithms take a height field as input, typically a rectangular grid of elevation data H(x; y), and approximate it with a mesh of triangles, also known as a triangulated irregular network, or TIN. The algorithms attempt to minimize both the error and the number of triangles in the approximation. Applications include fast rendering of terrain data for flight simulation and fitting of surfaces to range data in computer vision. The methods can also be used to simplify multichannel height fields such as textured terrains or planar color images. The most successful method we examine is the greedy insertion algorithm. It begins with a simple triangulation of the domain and, on each pass, finds the input point with highest error in the current approximation and inserts it as a vertex in the triangulation. The mesh is updated either with Delaunay triangul...
Online Routing in Triangulations
 IN PROC. OF THE 10 TH ANNUAL INT. SYMP. ON ALGORITHMS AND COMPUTATION ISAAC
, 1999
"... We consider online routing strategies for routing between the vertices of embedded planar straight line graphs. Our results include (1) two deterministic memoryless routing strategies, one that works for all Delaunay triangulations and the other that works for all regular triangulations, (2) a ..."
Abstract

Cited by 138 (14 self)
 Add to MetaCart
We consider online routing strategies for routing between the vertices of embedded planar straight line graphs. Our results include (1) two deterministic memoryless routing strategies, one that works for all Delaunay triangulations and the other that works for all regular triangulations, (2) a randomized memoryless strategy that works for all triangulations, (3) an O(1) memory strategy that works for all convex subdivisions, (4) an O(1) memory strategy that approximates the shortest path in Delaunay triangulations, and (5) theoretical and experimental results on the competitiveness of these strategies.
Tetrahedral Mesh Generation by Delaunay Refinement
 Proc. 14th Annu. ACM Sympos. Comput. Geom
, 1998
"... Given a complex of vertices, constraining segments, and planar straightline constraining facets in E 3 , with no input angle less than 90 ffi , an algorithm presented herein can generate a conforming mesh of Delaunay tetrahedra whose circumradiustoshortest edge ratios are no greater than two ..."
Abstract

Cited by 136 (6 self)
 Add to MetaCart
(Show Context)
Given a complex of vertices, constraining segments, and planar straightline constraining facets in E 3 , with no input angle less than 90 ffi , an algorithm presented herein can generate a conforming mesh of Delaunay tetrahedra whose circumradiustoshortest edge ratios are no greater than two. The sizes of the tetrahedra can provably grade from small to large over a relatively short distance. An implementation demonstrates that the algorithm generates excellent meshes, generally surpassing the theoretical bounds, and is effective in eliminating tetrahedra with small or large dihedral angles, although they are not all covered by the theoretical guarantee. 1 Introduction Meshes of triangles or tetrahedra have many applications, including interpolation, rendering, and numerical methods such as the finite element method. Most such applications demand more than just a triangulation of the object or domain being rendered or simulated. To ensure accurate results, the triangles or tetr...
Efficient Exact Arithmetic for Computational Geometry
 Proceedings of the Ninth Annual Symposium on Computational Geometry
, 1993
"... ..."
(Show Context)
A Pliant Method for Anisotropic Mesh Generation
"... A new algorithm for the generation of anisotropic, unstructured triangular meshes in two dimensions is described. Inputs to the algorithm are the boundary geometry and a metric that specifies the desired element size and shape as a function of position. The algorithm is an example of what we call p ..."
Abstract

Cited by 91 (2 self)
 Add to MetaCart
A new algorithm for the generation of anisotropic, unstructured triangular meshes in two dimensions is described. Inputs to the algorithm are the boundary geometry and a metric that specifies the desired element size and shape as a function of position. The algorithm is an example of what we call pliant mesh generation. It first constructs the constrained Delaunay triangulation of the domain, then iteratively smooths, refines, and retriangulates. On each iteration, a node is selected at random, it is repositioned according to attraction/repulsion with its neighbors, the neighborhood is retriangulated, and nodes are inserted or deleted as necessary. All operations are done relative to the metric tensor. This simple method generates high quality meshes whose elements conform well to the requested shape metric. The method appears particularly well suited to surface meshing and viscous flow simulations, where stretched triangles are desirable, and to timedependent remeshing problems.
Image Warping with Scattered Data Interpolation Methods
, 1992
"... Image warping has many applications in art as well as in image processing. Usually, displacements are computed with mathematical functions or by transformations of a triangulation of control points. Here, different approaches based on scattered data interpolation methods are presented. These methods ..."
Abstract

Cited by 89 (3 self)
 Add to MetaCart
Image warping has many applications in art as well as in image processing. Usually, displacements are computed with mathematical functions or by transformations of a triangulation of control points. Here, different approaches based on scattered data interpolation methods are presented. These methods provide smooth deformations with easily controllable behavior. The usefulness and performance of some selected classes of scattered data interpolation methods in this context is analyzed.