Results 1  10
of
185
On active contour models and balloons
 CVGIP: Image
"... The use.of energyminimizing curves, known as “snakes, ” to extract features of interest in images has been introduced by Kass, Witkhr & Terzopoulos (Znt. J. Comput. Vision 1, 1987,321331). We present a model of deformation which solves some of the problems encountered with the original method. The ..."
Abstract

Cited by 461 (37 self)
 Add to MetaCart
The use.of energyminimizing curves, known as “snakes, ” to extract features of interest in images has been introduced by Kass, Witkhr & Terzopoulos (Znt. J. Comput. Vision 1, 1987,321331). We present a model of deformation which solves some of the problems encountered with the original method. The external forces that push the curve to the edges are modified to give more stable results. The original snake, when it is not close enough to contours, is not attracted by them and straightens to a line. Our model makes the curve behave like a balloon which is inflated by an additional force. The initial curve need no longer be close to the solution to converge. The curve passes over weak edges and is stopped only if the edge is strong. We give examples of extracting a ventricle in medical images. We have also made a first step toward 3D object reconstruction, by tracking the extracted contour on a series of successive cross sections. 0 1991 Academic press, 1~. I.
Evaluation of Interest Point Detectors
, 2000
"... Many different lowlevel feature detectors exist and it is widely agreed that the evaluation of detectors is important. In this paper we introduce two evaluation criteria for interest points: repeatability rate and information content. Repeatability rate evaluates the geometric stability under diff ..."
Abstract

Cited by 295 (7 self)
 Add to MetaCart
Many different lowlevel feature detectors exist and it is widely agreed that the evaluation of detectors is important. In this paper we introduce two evaluation criteria for interest points: repeatability rate and information content. Repeatability rate evaluates the geometric stability under different transformations. Information content measures the distinctiveness of features. Different interest point detectors are compared using these two criteria. We determine which detector gives the best results and show that it satisfies the criteria well.
Edge Detection and Ridge Detection with Automatic Scale Selection
 CVPR'96
, 1996
"... When extracting features from image data, the type of information that can be extracted may be strongly dependent on the scales at which the feature detectors are applied. This article presents a systematic methodology for addressing this problem. A mechanism is presented for automatic selection of ..."
Abstract

Cited by 247 (20 self)
 Add to MetaCart
When extracting features from image data, the type of information that can be extracted may be strongly dependent on the scales at which the feature detectors are applied. This article presents a systematic methodology for addressing this problem. A mechanism is presented for automatic selection of scale levels when detecting onedimensional features, such as edges and ridges. Anovel concept of a scalespace edge is introduced, defined as a connected set of points in scalespace at which: (i) the gradient magnitude assumes a local maximum in the gradient direction, and (ii) a normalized measure of the strength of the edge response is locally maximal over scales. An important property of this definition is that it allows the scale levels to vary along the edge. Two specific measures of edge strength are analysed in detail. It is shown that by expressing these in terms of γnormalized derivatives, an immediate consequence of this definition is that fine scales are selected for sharp edges (so as to reduce the shape distortions due to scalespace smoothing), whereas coarse scales are selected for diffuse edges, such that an edge model constitutes a valid abstraction of the intensity profile across the edge. With slight modifications, this idea can be used for formulating a ridge detector with automatic scale selection, having the characteristic property that the selected scales on a scalespace ridge instead reflect the width of the ridge.
Splines: A Perfect Fit for Signal/Image Processing
 IEEE SIGNAL PROCESSING MAGAZINE
, 1999
"... ..."
Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation
 INTERNATIONAL JOURNAL OF COMPUTER VISION
, 2002
"... This paper presents a novel variational framework to deal with frame partition problems in Computer Vision. This framework exploits boundary and regionbased segmentation modules under a curvebased optimization objective function. The task of supervised texture segmentation is considered to demonst ..."
Abstract

Cited by 234 (8 self)
 Add to MetaCart
This paper presents a novel variational framework to deal with frame partition problems in Computer Vision. This framework exploits boundary and regionbased segmentation modules under a curvebased optimization objective function. The task of supervised texture segmentation is considered to demonstrate the potentials of the proposed framework. The textured feature space is generated by filtering the given textured images using isotropic and anisotropic filters, and analyzing their responses as multicomponent conditional probability density functions. The texture segmentation is obtained by unifying region and boundarybased information as an improved Geodesic Active Contour Model. The defined objective function is minimized using a gradientdescent method where a level set approach is used to implement the obtained PDE. According to this PDE, the curve propagation towards the final solution is guided by boundary and regionbased segmentation forces, and is constrained by a regularity force. The level set implementation is performed using a fast front propagation algorithm where topological changes are naturally handled. The performance of our method is demonstrated on a variety of synthetic and real textured frames.
Recognition without Correspondence using Multidimensional Receptive Field Histograms
 International Journal of Computer Vision
, 2000
"... . The appearance of an object is composed of local structure. This local structure can be described and characterized by a vector of local features measured by local operators such as Gaussian derivatives or Gabor filters. This article presents a technique where appearances of objects are represente ..."
Abstract

Cited by 209 (19 self)
 Add to MetaCart
. The appearance of an object is composed of local structure. This local structure can be described and characterized by a vector of local features measured by local operators such as Gaussian derivatives or Gabor filters. This article presents a technique where appearances of objects are represented by the joint statistics of such local neighborhood operators. As such, this represents a new class of appearance based techniques for computer vision. Based on joint statistics, the paper develops techniques for the identification of multiple objects at arbitrary positions and orientations in a cluttered scene. Experiments show that these techniques can identify over 100 objects in the presence of major occlusions. Most remarkably, the techniques have low complexity and therefore run in realtime. 1. Introduction The paper proposes a framework for the statistical representation of the appearance of arbitrary 3D objects. This representation consists of a probability density function or jo...
SUSAN  A New Approach to Low Level Image Processing
 International Journal of Computer Vision
, 1995
"... This paper describes a new approach to low level image processing; in particular, edge and corner detection and structure preserving noise reduction. ..."
Abstract

Cited by 205 (3 self)
 Add to MetaCart
This paper describes a new approach to low level image processing; in particular, edge and corner detection and structure preserving noise reduction.
Finite Element Methods for Active Contour Models and Balloons for 2D and 3D Images
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1991
"... The use of energyminimizing curves, known as "snakes" to extract features of interest in images has been introduced by Kass, Witkin and Terzopoulos [23]. A balloon model was introduced in [12] as a way to generalize and solve some of the problems encountered with the original method. We present a 3 ..."
Abstract

Cited by 161 (22 self)
 Add to MetaCart
The use of energyminimizing curves, known as "snakes" to extract features of interest in images has been introduced by Kass, Witkin and Terzopoulos [23]. A balloon model was introduced in [12] as a way to generalize and solve some of the problems encountered with the original method. We present a 3D generalization of the balloon model as a 3D deformable surface, which evolves in 3D images. It is deformed under the action of internal and external forces attracting the surface toward detected edgels by means of an attraction potential. We also show properties of energyminimizing surfaces concerning their relationship with 3D edge points. To solve the minimization problem for a surface, two simplified approaches are shown first, defining a 3D surface as a series of 2D planar curves. Then, after comparing Finite Element Method and Finite Difference Method in the 2D problem, we solve the 3D model using the Finite Element Method yielding greater stability and faster convergence. We have a...
Local scale control for edge detection and blur estimation
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1998
"... Abstract—The standard approach to edge detection is based on a model of edges as large step changes in intensity. This approach fails to reliably detect and localize edges in natural images where blur scale and contrast can vary over a broad range. The main problem is that the appropriate spatial sc ..."
Abstract

Cited by 108 (10 self)
 Add to MetaCart
Abstract—The standard approach to edge detection is based on a model of edges as large step changes in intensity. This approach fails to reliably detect and localize edges in natural images where blur scale and contrast can vary over a broad range. The main problem is that the appropriate spatial scale for local estimation depends upon the local structure of the edge, and thus varies unpredictably over the image. Here we show that knowledge of sensor properties and operator norms can be exploited to define a unique, locally computable minimum reliable scale for local estimation at each point in the image. This method for local scale control is applied to the problem of detecting and localizing edges in images with shallow depth of field and shadows. We show that edges spanning a broad range of blur scales and contrasts can be recovered accurately by a single system with no input parameters other than the second moment of the sensor noise. A natural dividend of this approach is a measure of the thickness of contours which can be used to estimate focal and penumbral blur. Local scale control is shown to be important for the estimation of blur in complex images, where the potential for interference between nearby edges of very different blur scale requires that estimates be made at the minimum reliable scale.
Magnetic resonance image tissue classification using a partial volume model
 NEUROIMAGE
, 2001
"... We describe a sequence of lowlevel operations to isolate and classify brain tissue within T1weighted magnetic resonance images (MRI). Our method first removes nonbrain tissue using a combination of anisotropic diffusion filtering, edge detection, and mathematical morphology. We compensate for imag ..."
Abstract

Cited by 97 (5 self)
 Add to MetaCart
We describe a sequence of lowlevel operations to isolate and classify brain tissue within T1weighted magnetic resonance images (MRI). Our method first removes nonbrain tissue using a combination of anisotropic diffusion filtering, edge detection, and mathematical morphology. We compensate for image nonuniformities due to magnetic field inhomogeneities by fitting a tricubic Bspline gain field to local estimates of the image nonuniformity spaced throughout the MRI volume. The local estimates are computed by fitting a partial volume tissue measurement model to histograms of neighborhoods about each estimate point. The measurement model uses mean tissue intensity and noise variance values computed from the global image and a multiplicative bias parameter that is estimated for each region during the histogram fit. Voxels in the intensitynormalized image are then classified into six tissue types using a maximum a posteriori classifier. This classifier combines the partial volume tissue measurement model with a Gibbs prior that models the spatial properties of the brain. We validate each stage of our algorithm on real and phantom data. Using data from the 20 normal MRI brain data sets of the Internet Brain Segmentation Repository, our method achieved average � indices of ��0.746 � 0.114 for gray matter (GM) and ��0.798 � 0.089 for white matter (WM) compared to expert labeled data. Our method achieved average � indices �� 0.893 � 0.041 for GM and ��0.928 � 0.039 for WM compared to the ground truth labeling on 12 volumes from the Montreal Neurological Institute’s BrainWeb phantom.