Results 1 
5 of
5
Monads Need Not Be Endofunctors
"... Abstract. We introduce a generalisation of monads, called relative monads, allowing for underlying functors between different categories. Examples include finitedimensional vector spaces, untyped and typed λcalculus syntax and indexed containers. We show that the Kleisli and EilenbergMoore constr ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
Abstract. We introduce a generalisation of monads, called relative monads, allowing for underlying functors between different categories. Examples include finitedimensional vector spaces, untyped and typed λcalculus syntax and indexed containers. We show that the Kleisli and EilenbergMoore constructions carry over to relative monads and are related to relative adjunctions. Under reasonable assumptions, relative monads are monoids in the functor category concerned and extend to monads, giving rise to a coreflection between monads and relative monads. Arrows are also an instance of relative monads. 1
Coalgebraic Components in a ManySorted Microcosm
"... Abstract. The microcosm principle, advocated by Baez and Dolan and formalized for Lawvere theories lately by three of the authors, has been applied to coalgebras in order to describe compositional behavior systematically. Here we further illustrate the usefulness of the approach by extending it to a ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
Abstract. The microcosm principle, advocated by Baez and Dolan and formalized for Lawvere theories lately by three of the authors, has been applied to coalgebras in order to describe compositional behavior systematically. Here we further illustrate the usefulness of the approach by extending it to a manysorted setting. Then we can show that the coalgebraic component calculi of Barbosa are examples, with compositionality of behavior following from microcosm structure. The algebraic structure on these coalgebraic components corresponds to variants of Hughes’ notion of arrow, introduced to organize computations in functional programming. 1
Traces for Coalgebraic Components
 MATH. STRUCT. IN COMP. SCIENCE
, 2010
"... This paper contributes a feedback operator, in the form of a monoidal trace, to the theory of coalgebraic, statebased modelling of components. The feedback operator on components is shown to satisfy the trace axioms of Joyal, Street and Verity. We employ McCurdy’s tube diagrams, an extension of sta ..."
Abstract
 Add to MetaCart
This paper contributes a feedback operator, in the form of a monoidal trace, to the theory of coalgebraic, statebased modelling of components. The feedback operator on components is shown to satisfy the trace axioms of Joyal, Street and Verity. We employ McCurdy’s tube diagrams, an extension of standard string diagrams for monoidal categories, for representing and manipulating component diagrams. The microcosm principle then yields a canonical “inner” traced monoidal structure on the category of resumptions (elements of final coalgebras / components). This generalises an observation by Abramsky, Haghverdi and Scott.
Short Contributions
"... CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics. CWI's research has a themeoriented structure and is grouped into four clusters. Listed below are the names of the clusters and in parentheses their acronyms. Probability, Networks and Algorithms (PN ..."
Abstract
 Add to MetaCart
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics. CWI's research has a themeoriented structure and is grouped into four clusters. Listed below are the names of the clusters and in parentheses their acronyms. Probability, Networks and Algorithms (PNA) Software Engineering (SEN)
CMCS 2010 Categorifying Computations into Components via Arrows as Profunctors
"... The notion of arrow by Hughes is an axiomatization of the algebraic structure possessed by structured computations in general. We claim that an arrow also serves as a basic component calculus for composing statebased systems as components—in fact, it is a categorified version of arrow that does so. ..."
Abstract
 Add to MetaCart
The notion of arrow by Hughes is an axiomatization of the algebraic structure possessed by structured computations in general. We claim that an arrow also serves as a basic component calculus for composing statebased systems as components—in fact, it is a categorified version of arrow that does so. In this paper, following the second author’s previous work with Heunen, Jacobs and Sokolova, we prove that a certain coalgebraic modeling of components—which generalizes Barbosa’s—indeed carries such arrow structure. Our coalgebraic modeling of components is parametrized by an arrow A that specifies computational structure exhibited by components; it turns out that it is this arrow structure of A that is lifted and realizes the (categorified) arrow structure on components. The lifting is described using the first author’s recent characterization of an arrow as an internal strong monad in Prof, the bicategory of small categories and profunctors.