Results 1  10
of
420
Ant algorithms for discrete optimization
 ARTIFICIAL LIFE
, 1999
"... This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies’ foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic ..."
Abstract

Cited by 475 (42 self)
 Add to MetaCart
(Show Context)
This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies’ foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic biological findings on real ants are reviewed and their artificial counterparts as well as the ACO metaheuristic are defined. In the second part of the article a number of applications of ACO algorithms to combinatorial optimization and routing in communications networks are described. We conclude with a discussion of related work and of some of the most important aspects of the ACO metaheuristic.
Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems
 ARTIF. INTELL
, 1992
"... This paper describes a simple heuristic approach to solving largescale constraint satisfaction and scheduling problems. In this approach one starts with an inconsistent assignment for a set of variables and searches through the space of possible repairs. The search can be guided by a valueorderin ..."
Abstract

Cited by 458 (6 self)
 Add to MetaCart
This paper describes a simple heuristic approach to solving largescale constraint satisfaction and scheduling problems. In this approach one starts with an inconsistent assignment for a set of variables and searches through the space of possible repairs. The search can be guided by a valueordering heuristic, the minconflicts heuristic, that attempts to minimize the number of constraint violations after each step. The heuristic can be used with a variety of different search strategies. We demonstrate empirically that on the nqueens problem, a technique based on this approach performs orders of magnitude better than traditional backtracking techniques. We also describe a scheduling application where the approach has been used successfully. A theoretical analysis is presented both to explain why this method works well on certain types of problems and to predict when it is likely to be One of the most promising general approaches for solving combinatorial search problems is to generate an
The Maximum Clique Problem
, 1999
"... Contents 1 Introduction 2 1.1 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Problem Formulations 4 2.1 Integer Programming Formulations . . . . . . . . . . . . . . . . . . . 5 2.2 Continuous Formulations . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Computation ..."
Abstract

Cited by 195 (21 self)
 Add to MetaCart
(Show Context)
Contents 1 Introduction 2 1.1 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Problem Formulations 4 2.1 Integer Programming Formulations . . . . . . . . . . . . . . . . . . . 5 2.2 Continuous Formulations . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Computational Complexity 12 4 Bounds and Estimates 15 5 Exact Algorithms 19 5.1 Enumerative Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2 Exact Algorithms for the Unweighted Case . . . . . . . . . . . . . . 21 5.3 Exact Algorithms for the Weighted Case . . . . . . . . . . . . . . . . 25 6 Heuristics 27 6.1 Sequential Greedy Heuristics . . . . . . . . . . . . . . . . . . . . . . 28 6.2 Local Search Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.3 Advanced Search Heuristics . . . . . . . . . . . . . . . . . . . . . . . 30 6.3.1 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . 30 6.3.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . .
A Survey of Automated Timetabling
, 1999
"... The timetabling problem consists in scheduling a sequence of lectures between teachers and students in a prefixed period of time (typically a week), satisfying a set of constraints of various types. A large number of variants of the timetabling problem have been proposed in the literature, which d ..."
Abstract

Cited by 185 (15 self)
 Add to MetaCart
The timetabling problem consists in scheduling a sequence of lectures between teachers and students in a prefixed period of time (typically a week), satisfying a set of constraints of various types. A large number of variants of the timetabling problem have been proposed in the literature, which differ from each other based on the type of institution involved (university or school) and the type of constraints. This problem, that has been traditionally considered in the operational research field, has recently been tackled with techniques belonging also to Artificial Intelligence (e.g., genetic algorithms, tabu search, and constraint satisfaction). In this paper, we survey the various formulations of the problem, and the techniques and algorithms used for its solution.
Theoretical and Numerical ConstraintHandling Techniques used with Evolutionary Algorithms: A Survey of the State of the Art
, 2002
"... This paper provides a comprehensive survey of the most popular constrainthandling techniques currently used with evolutionary algorithms. We review approaches that go from simple variations of a penalty function, to others, more sophisticated, that are biologically inspired on emulations of the imm ..."
Abstract

Cited by 178 (26 self)
 Add to MetaCart
This paper provides a comprehensive survey of the most popular constrainthandling techniques currently used with evolutionary algorithms. We review approaches that go from simple variations of a penalty function, to others, more sophisticated, that are biologically inspired on emulations of the immune system, culture or ant colonies. Besides describing briefly each of these approaches (or groups of techniques), we provide some criticism regarding their highlights and drawbacks. A small comparative study is also conducted, in order to assess the performance of several penaltybased approaches with respect to a dominancebased technique proposed by the author, and with respect to some mathematical programming approaches. Finally, we provide some guidelines regarding how to select the most appropriate constrainthandling technique for a certain application, ad we conclude with some of the the most promising paths of future research in this area.
HeavyTailed Phenomena in Satisfiability and Constraint Satisfaction Problems
 J. of Autom. Reasoning
, 2000
"... Abstract. We study the runtime distributions of backtrack procedures for propositional satisfiability and constraint satisfaction. Such procedures often exhibit a large variability in performance. Our study reveals some intriguing properties of such distributions: They are often characterized by ver ..."
Abstract

Cited by 162 (27 self)
 Add to MetaCart
(Show Context)
Abstract. We study the runtime distributions of backtrack procedures for propositional satisfiability and constraint satisfaction. Such procedures often exhibit a large variability in performance. Our study reveals some intriguing properties of such distributions: They are often characterized by very long tails or “heavy tails”. We will show that these distributions are best characterized by a general class of distributions that can have infinite moments (i.e., an infinite mean, variance, etc.). Such nonstandard distributions have recently been observed in areas as diverse as economics, statistical physics, and geophysics. They are closely related to fractal phenomena, whose study was introduced by Mandelbrot. We also show how random restarts can effectively eliminate heavytailed behavior. Furthermore, for harder problem instances, we observe long tails on the lefthand side of the distribution, which is indicative of a nonnegligible fraction of relatively short, successful runs. A rapid restart strategy eliminates heavytailed behavior and takes advantage of short runs, significantly reducing expected solution time. We demonstrate speedups of up to two orders of magnitude on SAT and CSP encodings of hard problems in planning, scheduling, and circuit synthesis. Key words: satisfiability, constraint satisfaction, heavy tails, backtracking 1.
Hybrid Evolutionary Algorithms for Graph Coloring
, 1998
"... A recent and very promising approach for combinatorial optimization is to embed local search into the framework of evolutionary algorithms. In this paper, we present such hybrid algorithms for the graph coloring problem. These algorithms combine a new class of highly specialized crossover operators ..."
Abstract

Cited by 140 (18 self)
 Add to MetaCart
A recent and very promising approach for combinatorial optimization is to embed local search into the framework of evolutionary algorithms. In this paper, we present such hybrid algorithms for the graph coloring problem. These algorithms combine a new class of highly specialized crossover operators and a wellknown tabu search algorithm. Experiments of such a hybrid algorithm are carried out on large DIMACS Challenge benchmark graphs. Results prove very competitive with and even better than those of stateoftheart algorithms. Analysis of the behavior of the algorithm sheds light on ways to further improvement. Keywords: Graph coloring, solution recombination, tabu search, combinatorial optimization. 1 Introduction A recent and very promising approach for combinatorial optimization is to embed local search into the framework of population based evolutionary algorithms, leading to hybrid evolutionary algorithms (HEA). Such an algorithm is essentially based on two key elements: an eff...
The Constrainedness of Search
 In Proceedings of AAAI96
, 1999
"... We propose a definition of `constrainedness' that unifies two of the most common but informal uses of the term. These are that branching heuristics in search algorithms often try to make the most "constrained" choice, and that hard search problems tend to be "critically constrain ..."
Abstract

Cited by 126 (29 self)
 Add to MetaCart
(Show Context)
We propose a definition of `constrainedness' that unifies two of the most common but informal uses of the term. These are that branching heuristics in search algorithms often try to make the most "constrained" choice, and that hard search problems tend to be "critically constrained". Our definition of constrainedness generalizes a number of parameters used to study phase transition behaviour in a wide variety of problem domains. As well as predicting the location of phase transitions in solubility, constrainedness provides insight into why problems at phase transitions tend to be hard to solve. Such problems are on a constrainedness "knifeedge", and we must search deep into the problem before they look more or less soluble. Heuristics that try to get off this knifeedge as quickly as possible by, for example, minimizing the constrainedness are often very effective. We show that heuristics from a wide variety of problem domains can be seen as minimizing the constrainedness (or proxies ...
Recent Research Directions in Automated Timetabling
 ACCEPTED FOR PUBLICATION IN EUROPEAN JOURNAL OF OPERATIONAL RESEARCH – EJOR
, 2002
"... The aim of this paper is to give a brief introduction to some recent approaches to timetabling problems that have been developed or are under development in the Automated Scheduling, Optimisation and Planning Research Group (ASAP) at the University of Nottingham. We have concentrated upon university ..."
Abstract

Cited by 122 (43 self)
 Add to MetaCart
(Show Context)
The aim of this paper is to give a brief introduction to some recent approaches to timetabling problems that have been developed or are under development in the Automated Scheduling, Optimisation and Planning Research Group (ASAP) at the University of Nottingham. We have concentrated upon university timetabling but we believe that some of the methodologies that are described can be used for different timetabling problems such as employee timetabling, timetabling of sports fixtures, etc. The paper suggests a number of approaches and comprises three parts. Firstly, recent heuristic and evolutionary timetabling algorithms are discussed. In particular, two evolutionary algorithm developments are described: a method for decomposing large realworld timetabling problems and a method for heuristic initialisation of the population. Secondly, an approach that considers timetabling problems as multicriteria decision problems is presented. Thirdly, we discuss a casebased reasoning approach that employs previous experience to solve new timetabling problems. Finally, we outline some new research ideas and directions in the field of timetabling. The overall aim of these research directions is to explore approaches that can operate at a higher level of generality than is currently possible.