Results 1  10
of
42
Computational Complexity Of Neural Networks: A Survey
, 1994
"... . We survey some of the central results in the complexity theory of discrete neural networks, with pointers to the literature. Our main emphasis is on the computational power of various acyclic and cyclic network models, but we also discuss briefly the complexity aspects of synthesizing networks fr ..."
Abstract

Cited by 22 (6 self)
 Add to MetaCart
. We survey some of the central results in the complexity theory of discrete neural networks, with pointers to the literature. Our main emphasis is on the computational power of various acyclic and cyclic network models, but we also discuss briefly the complexity aspects of synthesizing networks from examples of their behavior. CR Classification: F.1.1 [Computation by Abstract Devices]: Models of Computationneural networks, circuits; F.1.3 [Computation by Abstract Devices ]: Complexity Classescomplexity hierarchies Key words: Neural networks, computational complexity, threshold circuits, associative memory 1. Introduction The currently again very active field of computation by "neural" networks has opened up a wealth of fascinating research topics in the computational complexity analysis of the models considered. While much of the general appeal of the field stems not so much from new computational possibilities, but from the possibility of "learning", or synthesizing networks...
On PAC Learning using Winnow, Perceptron, and a PerceptronLike Algorithm
"... In this paper we analyze the PAC learning abilities of several simple iterative algorithms for learning linear threshold functions, obtaining both positive and negative results. We show that Littlestone’s Winnow algorithm is not an efficient PAC learning algorithm for the class of positive linear th ..."
Abstract

Cited by 20 (9 self)
 Add to MetaCart
In this paper we analyze the PAC learning abilities of several simple iterative algorithms for learning linear threshold functions, obtaining both positive and negative results. We show that Littlestone’s Winnow algorithm is not an efficient PAC learning algorithm for the class of positive linear threshold functions. We also prove that the Perceptron algorithm cannot efficiently learn the unrestricted class of linear threshold functions even under the uniform distribution on boolean examples. However, we show that the Perceptron algorithm can efficiently PAC learn the class of nested functions (a concept class known to be hard for Perceptron under arbitrary distributions) under the uniform distribution on boolean examples. Finally, we give a very simple Perceptronlike algorithm for learning origincentered halfspaces under the uniform distribution on the unit sphere in R^n. Unlike the Perceptron algorithm, which cannot learn in the presence of classification noise, the new algorithm can learn in the presence of monotonic noise (a generalization of classification noise). The new algorithm is significantly faster than previous algorithms in both the classification and monotonic noise settings.
Computing with Truly Asynchronous Threshold Logic Networks
 THEORETICAL COMPUTER SCIENCE
, 1995
"... We present simulation mechanisms by which any network of threshold logic units with either symmetric or asymmetric interunit connections (i.e., a symmetric or asymmetric "Hopfield net") can be simulated on a network of the same type, but without any a priori constraints on the order of updates of th ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
We present simulation mechanisms by which any network of threshold logic units with either symmetric or asymmetric interunit connections (i.e., a symmetric or asymmetric "Hopfield net") can be simulated on a network of the same type, but without any a priori constraints on the order of updates of the units. Together with earlier constructions, the results show that the truly asynchronous network model is computationally equivalent to the seemingly more powerful models with either ordered sequential or fully parallel updates.
Complexity Issues in Discrete Hopfield Networks
, 1994
"... We survey some aspects of the computational complexity theory of discretetime and discretestate Hopfield networks. The emphasis is on topics that are not adequately covered by the existing survey literature, most significantly: 1. the known upper and lower bounds for the convergence times of Hopfi ..."
Abstract

Cited by 18 (4 self)
 Add to MetaCart
We survey some aspects of the computational complexity theory of discretetime and discretestate Hopfield networks. The emphasis is on topics that are not adequately covered by the existing survey literature, most significantly: 1. the known upper and lower bounds for the convergence times of Hopfield nets (here we consider mainly worstcase results); 2. the power of Hopfield nets as general computing devices (as opposed to their applications to associative memory and optimization); 3. the complexity of the synthesis ("learning") and analysis problems related to Hopfield nets as associative memories. Draft chapter for the forthcoming book The Computational and Learning Complexity of Neural Networks: Advanced Topics (ed. Ian Parberry).
Tractable Competence
 Minds Mach
, 1998
"... In the study of cognitive processes, limitations on computational resources (computing time and memory space) are usually considered to be beyond the scope of a theory of competence, and to be exclusively relevant to the study of performance. Starting from considerations derived from the theory of c ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
In the study of cognitive processes, limitations on computational resources (computing time and memory space) are usually considered to be beyond the scope of a theory of competence, and to be exclusively relevant to the study of performance. Starting from considerations derived from the theory of computational complexity, in this paper I argue that there are good reasons for claiming that some aspects of resource limitations pertain to the domain of a theory of competence. Key words: Competence vs. performance, computational complexity, levels of cognitive explanation. 1.
Computational power of neural networks: a characterization in terms of kolmogorov complexity
 IEEE Transactions on Information Theory
, 1997
"... Abstract — The computational power of recurrent neural networks is shown to depend ultimately on the complexity of the real constants (weights) of the network. The complexity, or information contents, of the weights is measured by a variant of resourcebounded Kolmogorov complexity, taking into acco ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
Abstract — The computational power of recurrent neural networks is shown to depend ultimately on the complexity of the real constants (weights) of the network. The complexity, or information contents, of the weights is measured by a variant of resourcebounded Kolmogorov complexity, taking into account the time required for constructing the numbers. In particular, we reveal a full and proper hierarchy of nonuniform complexity classes associated with networks having weights of increasing Kolmogorov complexity. Index Terms—Kolmogorov complexity, neural networks, Turing machines.
The tractable cognition thesis
 Cognitive Science: A Multidisciplinary Journal
, 2008
"... The recognition that human minds/brains are finite systems with limited resources for computation has led some researchers to advance the Tractable Cognition thesis: Human cognitive capacities are constrained by computational tractability. This thesis, if true, serves cognitive psychology by constra ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
The recognition that human minds/brains are finite systems with limited resources for computation has led some researchers to advance the Tractable Cognition thesis: Human cognitive capacities are constrained by computational tractability. This thesis, if true, serves cognitive psychology by constraining the space of computationallevel theories of cognition. To utilize this constraint, a precise and workable definition of “computational tractability ” is needed. Following computer science tradition, many cognitive scientists and psychologists define computational tractability as polynomialtime computability, leading to the PCognition thesis. This article explains how and why the PCognition thesis may be overly restrictive, risking the exclusion of veridical computationallevel theories from scientific investigation. An argument is made to replace the PCognition thesis by the FPTCognition thesis as an alternative formalization of the Tractable Cognition thesis (here, FPT stands for fixedparameter tractable). Possible objections to the Tractable Cognition thesis, and its proposed formalization, are discussed, and existing misconceptions are clarified.
Neural Networks and Complexity Theory
 In Proc. 17th International Symposium on Mathematical Foundations of Computer Science
, 1992
"... . We survey some of the central results in the complexity theory of discrete neural networks, with pointers to the literature. 1 Introduction The recently revived field of computation by "neural" networks provides the complexity theorist with a wealth of fascinating research topics. While much of ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
. We survey some of the central results in the complexity theory of discrete neural networks, with pointers to the literature. 1 Introduction The recently revived field of computation by "neural" networks provides the complexity theorist with a wealth of fascinating research topics. While much of the general appeal of the field stems not so much from new computational possibilities, but from the possibility of "learning", or synthesizing networks directly from examples of their desired inputoutput behavior, it is nevertheless important to pay attention also to the complexity issues: firstly, what kinds of functions are computable by networks of a given type and size, and secondly, what is the complexity of the synthesis problems considered. In fact, inattention to these issues was a significant factor in the demise of the first stage of neural networks research in the late 60's, under the criticism of Minsky and Papert [51]. The intent of this paper is to survey some of the centra...
The Computational Power of Discrete Hopfield Nets with Hidden Units
 Neural Computation
, 1996
"... We prove that polynomial size discrete Hopfield networks with hidden units compute exactly the class of Boolean functions PSPACE/poly, i.e., the same functions as are computed by polynomial spacebounded nonuniform Turing machines. As a corollary to the construction, we observe also that networks wi ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
We prove that polynomial size discrete Hopfield networks with hidden units compute exactly the class of Boolean functions PSPACE/poly, i.e., the same functions as are computed by polynomial spacebounded nonuniform Turing machines. As a corollary to the construction, we observe also that networks with polynomially bounded interconnection weights compute exactly the class of functions P/poly, i.e., the class computed by polynomial timebounded nonuniform Turing machines.
An Overview Of The Computational Power Of Recurrent Neural Networks
 Proceedings of the 9th Finnish AI Conference STeP 2000{Millennium of AI, Espoo, Finland (Vol. 3: "AI of Tomorrow": Symposium on Theory, Finnish AI Society
, 2000
"... INTRODUCTION The two main streams of neural networks research consider neural networks either as a powerful family of nonlinear statistical models, to be used in for example pattern recognition applications [6], or as formal models to help develop a computational understanding of the brain [10]. His ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
INTRODUCTION The two main streams of neural networks research consider neural networks either as a powerful family of nonlinear statistical models, to be used in for example pattern recognition applications [6], or as formal models to help develop a computational understanding of the brain [10]. Historically, the brain theory interest was primary [32], but with the advances in computer technology, the application potential of the statistical modeling techniques has shifted the balance. 1 The study of neural networks as general computational devices does not strictly follow this division of interests: rather, it provides a general framework outlining the limitations and possibilities aecting both research domains. The prime historic example here is obviously Minsky's and Papert's 1969 study of the computational limitations of singlelayer perceptrons [34], which was a major inuence in turning away interest from neural network learning to symbolic AI techniques for more