Results 1 
9 of
9
Finiteness spaces
 Mathematical Structures in Computer Science
, 1987
"... We investigate a new denotational model of linear logic based on the purely relational model. In this semantics, webs are equipped with a notion of “finitary ” subsets satisfying a closure condition and proofs are interpreted as finitary sets. In spite of a formal similarity, this model is quite dif ..."
Abstract

Cited by 53 (13 self)
 Add to MetaCart
We investigate a new denotational model of linear logic based on the purely relational model. In this semantics, webs are equipped with a notion of “finitary ” subsets satisfying a closure condition and proofs are interpreted as finitary sets. In spite of a formal similarity, this model is quite different from the usual models of linear logic (coherence semantics, hypercoherence semantics, the various existing game semantics...). In particular, the standard fixpoint operators used for defining the general recursive functions are not finitary, although the primitive recursion operators are. This model can be considered as a discrete version of the Köthe space semantics introduced in a previous paper: we show how, given a field, each finiteness space gives rise to a vector space endowed with a linear topology, a notion introduced by Lefschetz in 1942, and we study the corresponding model where morphisms are linear continuous maps (a version of Girard’s quantitative semantics with coefficients in the field). We obtain in that way a new model of the recently introduced differential lambdacalculus. Notations. If S is a set, we denote by M(S) = N S the set of all multisets over S. If µ ∈ M(S), µ denotes the support of µ which is the set of all a ∈ S such that µ(a) ̸ = 0. A multiset is finite if it has a finite support. If a1,..., an are elements of some given set S, we denote by [a1,..., an] the corresponding multiset over S. The usual operations on natural numbers are extended to multisets pointwise. If (Si)i∈I are sets, we denote by πi the ith projection πi: ∏ j∈I Sj → Si.
On Köthe sequence spaces and linear logic
 Mathematical Structures in Computer Science
, 2001
"... We present a category of locally convex topological vector spaces which is a model of propositional classical linear logic, based on the standard concept of Kothe sequence spaces. In this setting, the spaces interpreting the exponential have a quite simple structure of commutative Hopf algebra. The ..."
Abstract

Cited by 31 (9 self)
 Add to MetaCart
We present a category of locally convex topological vector spaces which is a model of propositional classical linear logic, based on the standard concept of Kothe sequence spaces. In this setting, the spaces interpreting the exponential have a quite simple structure of commutative Hopf algebra. The coKleisli category of this linear category is a cartesian closed category of entire mappings. This work provides a simple setting where typed calculus and dierential calculus can be combined; we give a few examples of computations. 1
Algorithms and Orders for Finding Noncommutative Gröbner Bases
, 1997
"... The problem of choosing efficient algorithms and good admissible orders for computing Gröbner bases in noncommutative algebras is considered. Gröbner bases are an important tool that make many problems in polynomial algebra computationally tractable. However, the computation of Grobner bases is expe ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
The problem of choosing efficient algorithms and good admissible orders for computing Gröbner bases in noncommutative algebras is considered. Gröbner bases are an important tool that make many problems in polynomial algebra computationally tractable. However, the computation of Grobner bases is expensive, and in noncommutative algebras is not guaranteed to terminate. The algorithm, together with the order used to determine the leading term of each polynomial, are known to affect the cost of the computation, and are the focus of this thesis. A Gröbner basis is a set of polynomials computed, using Buchberger's algorithm, from another set of polynomials. The noncommutative form of Buchberger's algorithm repeatedly constructs a new polynomial from a triple, which is a pair of polynomials whose leading terms overlap and form a nontrivial common multiple. The algorithm leaves a number of details underspecified, and can be altered to improve its behavior. A significant improvement is the devel...
The Shuffle Hopf Algebra and Noncommutative Full Completeness
, 1999
"... We present a full completeness theorem for the multiplicative fragment of a variant of noncommutative linear logic, Yetter's cyclic linear logic (CyLL). The semantics is obtained by interpreting proofs as dinatural transformations on a category of topological vector spaces, these transformations b ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
We present a full completeness theorem for the multiplicative fragment of a variant of noncommutative linear logic, Yetter's cyclic linear logic (CyLL). The semantics is obtained by interpreting proofs as dinatural transformations on a category of topological vector spaces, these transformations being equivariant under certain actions of a noncocommutative Hopf algebra called the shuffle algebra. Multiplicative sequents are assigned a vector space of such dinaturals, and we show that this space has as a basis the denotations of cutfree proofs in CyLL+MIX. This can be viewed as a fully faithful representation of a free *autonomous category, canonically enriched over vector spaces. This paper
Category theory for linear logicians
 Linear Logic in Computer Science
, 2004
"... This paper presents an introduction to category theory with an emphasis on those aspects relevant to the analysis of the model theory of linear logic. With this in mind, we focus on the basic definitions of category theory and categorical logic. An analysis of cartesian and cartesian closed categori ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
This paper presents an introduction to category theory with an emphasis on those aspects relevant to the analysis of the model theory of linear logic. With this in mind, we focus on the basic definitions of category theory and categorical logic. An analysis of cartesian and cartesian closed categories and their relation to intuitionistic logic is followed by a consideration of symmetric monoidal closed, linearly distributive and ∗autonomous categories and their relation to multiplicative linear logic. We examine nonsymmetric monoidal categories, and consider them as models of noncommutative linear logic. We introduce traced monoidal categories, and discuss their relation to the geometry of interaction. The necessary aspects of the theory of monads is introduced in order to describe the categorical modelling of the exponentials. We conclude by briefly describing the notion of full completeness, a strong form of categorical completeness, which originated in the categorical model theory of linear logic. No knowledge of category theory is assumed, but we do assume knowledge of linear logic sequent calculus and the standard models of linear logic, and modest familiarity with typed lambda calculus. 0
Planar and Braided ProofNets for Multiplicative Linear Logic with Mix
, 1997
"... We consider a class of graphs embedded in R 2 as noncommutative proofnets with an explicit exchange rule. We give two characterization of such proofnets, one representing proofnets as CWcomplexes in a twodimensional disc, the other extending a characterization by Asperti. As a corollary, we ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
We consider a class of graphs embedded in R 2 as noncommutative proofnets with an explicit exchange rule. We give two characterization of such proofnets, one representing proofnets as CWcomplexes in a twodimensional disc, the other extending a characterization by Asperti. As a corollary, we obtain that the test of correctness in the case of planar graphs is linear in the size of the data. Braided proofnets are proofnets for multiplicative linear logic with Mix embedded in R 3 . In order to prove the cutelimination theorem, we consider proofnets in R 2 as projections of braided proofnets under regular isotopy. Contents 1 Introduction 2 2 Language 4 2.1 Links and ProofStructures . . . . . . . . . . . . . . . . . . . . 5 3 A combinatorial characterization. 8 3.1 Subnets of ProofNets . . . . . . . . . . . . . . . . . . . . . . 11 Research supported by EC Individual Fellowship Human Capital and Mobility, contract n. 930142. Both authors thank Jacques van de Wiele, f...
A Noncommutative Full Completeness Theorem (Extended Abstract)
 Elsevier Science B.V
, 1996
"... ) R.F. Blute 1 P.J. Scott 1 Dept. of Mathematics University of Ottawa Ottawa, Ontario K1N 6N5 CANADA E. N. T. C. S. Elsevier Science B. V. Abstract We present a full completeness theorem for the multiplicative fragment of a variant of noncommutative linear logic known as cyclic linear logic (Cy ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
) R.F. Blute 1 P.J. Scott 1 Dept. of Mathematics University of Ottawa Ottawa, Ontario K1N 6N5 CANADA E. N. T. C. S. Elsevier Science B. V. Abstract We present a full completeness theorem for the multiplicative fragment of a variant of noncommutative linear logic known as cyclic linear logic (CyLL), first defined by Yetter. The semantics is obtained by considering dinatural transformations on a category of topological vector spaces which are invariant under certain actions of a noncocommutative Hopf algebra, called the shuffle algebra. Multiplicative sequents are assigned a vector space of such dinaturals, and we show that the space has the denotations of cutfree proofs in CyLL+MIX as a basis. This work is a natural extension of the authors' previous work, "Linear Lauchli Semantics", where a similar theorem is obtained for the commutative logic. In that paper, we consider dinaturals which are invariant under certain actions of the additive group of integers. The passage from group...
A quantum double construction in Rel
, 2010
"... We study bialgebras in the compact closed category Rel of sets and binary relations. Various monoidal categories with extra structure arise as the categories of (co)modules of ..."
Abstract
 Add to MetaCart
We study bialgebras in the compact closed category Rel of sets and binary relations. Various monoidal categories with extra structure arise as the categories of (co)modules of
unknown title
, 2010
"... We study bialgebras and Hopf algebras in the compact closed category Rel of sets and binary relations. Various monoidal categories with extra structure arise as the categories of (co)modules of bialgebras and Hopf algebras in Rel. In particular, for any group G, we ..."
Abstract
 Add to MetaCart
We study bialgebras and Hopf algebras in the compact closed category Rel of sets and binary relations. Various monoidal categories with extra structure arise as the categories of (co)modules of bialgebras and Hopf algebras in Rel. In particular, for any group G, we