Results 1  10
of
278
On the mathematical foundations of learning
 Bulletin of the American Mathematical Society
, 2002
"... The problem of learning is arguably at the very core of the problem of intelligence, both biological and arti cial. T. Poggio and C.R. Shelton ..."
Abstract

Cited by 223 (12 self)
 Add to MetaCart
The problem of learning is arguably at the very core of the problem of intelligence, both biological and arti cial. T. Poggio and C.R. Shelton
A Survey of Computational Complexity Results in Systems and Control
, 2000
"... The purpose of this paper is twofold: (a) to provide a tutorial introduction to some key concepts from the theory of computational complexity, highlighting their relevance to systems and control theory, and (b) to survey the relatively recent research activity lying at the interface between these fi ..."
Abstract

Cited by 116 (21 self)
 Add to MetaCart
The purpose of this paper is twofold: (a) to provide a tutorial introduction to some key concepts from the theory of computational complexity, highlighting their relevance to systems and control theory, and (b) to survey the relatively recent research activity lying at the interface between these fields. We begin with a brief introduction to models of computation, the concepts of undecidability, polynomial time algorithms, NPcompleteness, and the implications of intractability results. We then survey a number of problems that arise in systems and control theory, some of them classical, some of them related to current research. We discuss them from the point of view of computational complexity and also point out many open problems. In particular, we consider problems related to stability or stabilizability of linear systems with parametric uncertainty, robust control, timevarying linear systems, nonlinear and hybrid systems, and stochastic optimal control.
Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations
 IN STACS
, 2005
"... We define Recursive Markov Chains (RMCs), a class of finitely presented denumerable Markov chains, and we study algorithms for their analysis. Informally, an RMC consists of a collection of finitestate Markov chains with the ability to invoke each other in a potentially recursive manner. RMCs offer ..."
Abstract

Cited by 67 (11 self)
 Add to MetaCart
We define Recursive Markov Chains (RMCs), a class of finitely presented denumerable Markov chains, and we study algorithms for their analysis. Informally, an RMC consists of a collection of finitestate Markov chains with the ability to invoke each other in a potentially recursive manner. RMCs offer a natural abstract model for probabilistic programs with procedures. They generalize, in a precise sense, a number of well studied stochastic models, including Stochastic ContextFree Grammars (SCFG) and MultiType Branching Processes (MTBP). We focus on algorithms for reachability and termination analysis for RMCs: what is the probability that an RMC started from a given state reaches another target state, or that it terminates? These probabilities are in general irrational, and they arise as (least) fixed point solutions to certain (monotone) systems of nonlinear equations associated with RMCs. We address both the qualitative problem of determining whether the probabilities are 0, 1 or inbetween, and
Numerical Homotopies to compute generic Points on positive dimensional Algebraic Sets
 Journal of Complexity
, 1999
"... Many applications modeled by polynomial systems have positive dimensional solution components (e.g., the path synthesis problems for fourbar mechanisms) that are challenging to compute numerically by homotopy continuation methods. A procedure of A. Sommese and C. Wampler consists in slicing the com ..."
Abstract

Cited by 50 (24 self)
 Add to MetaCart
Many applications modeled by polynomial systems have positive dimensional solution components (e.g., the path synthesis problems for fourbar mechanisms) that are challenging to compute numerically by homotopy continuation methods. A procedure of A. Sommese and C. Wampler consists in slicing the components with linear subspaces in general position to obtain generic points of the components as the isolated solutions of an auxiliary system. Since this requires the solution of a number of larger overdetermined systems, the procedure is computationally expensive and also wasteful because many solution paths diverge. In this article an embedding of the original polynomial system is presented, which leads to a sequence of homotopies, with solution paths leading to generic points of all components as the isolated solutions of an auxiliary system. The new procedure significantly reduces the number of paths to solutions that need to be followed. This approach has been implemented and applied to...
On the complexity of numerical analysis
 IN PROC. 21ST ANN. IEEE CONF. ON COMPUTATIONAL COMPLEXITY (CCC ’06
, 2006
"... We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis: • The BlumShubSmale model of computation over the reals. • A problem we call the “Generic Task of Numerical Computation, ” which captures an aspect of doing numerical computation ..."
Abstract

Cited by 48 (7 self)
 Add to MetaCart
We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis: • The BlumShubSmale model of computation over the reals. • A problem we call the “Generic Task of Numerical Computation, ” which captures an aspect of doing numerical computation in floating point, similar to the “long exponent model ” that has been studied in the numerical computing community. We show that both of these approaches hinge on the question of understanding the complexity of the following problem, which we call PosSLP: Given a divisionfree straightline program producing an integer N, decide whether N> 0. • In the BlumShubSmale model, polynomial time computation over the reals (on discrete inputs) is polynomialtime equivalent to PosSLP, when there are only algebraic constants. We conjecture that using transcendental constants provides no additional power, beyond nonuniform reductions to PosSLP, and we present some preliminary results supporting this conjecture. • The Generic Task of Numerical Computation is also polynomialtime equivalent to PosSLP. We prove that PosSLP lies in the counting hierarchy. Combining this with work of Tiwari, we obtain that the Euclidean Traveling Salesman Problem lies in the counting hierarchy – the previous best upper bound for this important problem (in terms of classical complexity classes) being PSPACE. In the course of developing the context for our results on arithmetic circuits, we present some new observations on the complexity of ACIT: the Arithmetic Circuit Identity Testing problem. In particular, we show that if n! is not ultimately easy, then ACIT has subexponential complexity.
The Realizability Approach to Computable Analysis and Topology
, 2000
"... policies, either expressed or implied, of the NSF, NAFSA, or the U.S. government. ..."
Abstract

Cited by 41 (19 self)
 Add to MetaCart
policies, either expressed or implied, of the NSF, NAFSA, or the U.S. government.
On the Complexity of Nash Equilibria and Other Fixed Points (Extended Abstract)
 IN PROC. FOCS
, 2007
"... We reexamine what it means to compute Nash equilibria and, more generally, what it means to compute a fixed point of a given Brouwer function, and we investigate the complexity of the associated problems. Specifically, we study the complexity of the following problem: given a finite game, Γ, with 3 ..."
Abstract

Cited by 39 (4 self)
 Add to MetaCart
We reexamine what it means to compute Nash equilibria and, more generally, what it means to compute a fixed point of a given Brouwer function, and we investigate the complexity of the associated problems. Specifically, we study the complexity of the following problem: given a finite game, Γ, with 3 or more players, and given ɛ> 0, compute an approximation within ɛ of some (actual) Nash equilibrium. We show that approximation of an actual Nash Equilibrium, even to within any nontrivial constant additive factor ɛ < 1/2 in just one desired coordinate, is at least as hard as the long standing squareroot sum problem, as well as a more general arithmetic circuit decision problem that characterizes Ptime in a unitcost model of computation with arbitrary precision rational arithmetic; thus placing the approximation problem in P, or even NP, would resolve major open problems in the complexity of numerical computation. We show similar results for market equilibria: it is hard to estimate with any nontrivial accuracy the equilibrium prices in an exchange economy with a unique equilibrium, where the economy is given by explicit algebraic formulas for the excess demand functions. We define a class, FIXP, which captures search problems that can be cast as fixed point
Univariate polynomials: nearly optimal algorithms for factorization and rootfinding
 In Proceedings of the International Symposium on Symbolic and Algorithmic Computation
, 2001
"... To approximate all roots (zeros) of a univariate polynomial, we develop two effective algorithms and combine them in a single recursive process. One algorithm computes a basic well isolated zerofree annulus on the complex plane, whereas another algorithm numerically splits the input polynomial of t ..."
Abstract

Cited by 38 (11 self)
 Add to MetaCart
To approximate all roots (zeros) of a univariate polynomial, we develop two effective algorithms and combine them in a single recursive process. One algorithm computes a basic well isolated zerofree annulus on the complex plane, whereas another algorithm numerically splits the input polynomial of the nth degree into two factors balanced in the degrees and with the zero sets separated by the basic annulus. Recursive combination of the two algorithms leads to computation of the complete numerical factorization of a polynomial into the product of linear factors and further to the approximation of the roots. The new rootfinder incorporates the earlier techniques of Schönhage, Neff/Reif, and Kirrinnis and our old and new techniques and yields nearly optimal (up to polylogarithmic factors) arithmetic and Boolean cost estimates for the computational complexity of both complete factorization and rootfinding. The improvement over our previous record Boolean complexity estimates is by roughly the factor of n for complete factorization and also for the approximation of wellconditioned (well isolated) roots, whereas the same algorithm is also optimal (under both arithmetic and Boolean models of computing) for the worst case input polynomial, whose roots can be illconditioned, forming
NPcomplete problems and physical reality
 ACM SIGACT News Complexity Theory Column, March. ECCC
, 2005
"... Can NPcomplete problems be solved efficiently in the physical universe? I survey proposals including soap bubbles, protein folding, quantum computing, quantum advice, quantum adiabatic algorithms, quantummechanical nonlinearities, hidden variables, relativistic time dilation, analog computing, Mal ..."
Abstract

Cited by 32 (4 self)
 Add to MetaCart
Can NPcomplete problems be solved efficiently in the physical universe? I survey proposals including soap bubbles, protein folding, quantum computing, quantum advice, quantum adiabatic algorithms, quantummechanical nonlinearities, hidden variables, relativistic time dilation, analog computing, MalamentHogarth spacetimes, quantum gravity, closed timelike curves, and “anthropic computing. ” The section on soap bubbles even includes some “experimental ” results. While I do not believe that any of the proposals will let us solve NPcomplete problems efficiently, I argue that by studying them, we can learn something not only about computation but also about physics. 1
Abstract versus concrete computation on metric partial algebras
 ACM Transactions on Computational Logic
, 2004
"... Data types containing infinite data, such as the real numbers, functions, bit streams and waveforms, are modelled by topological manysorted algebras. In the theory of computation on topological algebras there is a considerable gap between socalled abstract and concrete models of computation. We pr ..."
Abstract

Cited by 30 (19 self)
 Add to MetaCart
Data types containing infinite data, such as the real numbers, functions, bit streams and waveforms, are modelled by topological manysorted algebras. In the theory of computation on topological algebras there is a considerable gap between socalled abstract and concrete models of computation. We prove theorems that bridge the gap in the case of metric algebras with partial operations. With an abstract model of computation on an algebra, the computations are invariant under isomorphisms and do not depend on any representation of the algebra. Examples of such models are the ‘while ’ programming language and the BCSS model. With a concrete model of computation, the computations depend on the choice of a representation of the algebra and are not invariant under isomorphisms. Usually, the representations are made from the set N of natural numbers, and computability is reduced to classical computability on N. Examples of such models are computability via effective metric spaces, effective domain representations, and type two enumerability. The theory of abstract models is stable: there are many models of computation, and