Results 1 
3 of
3
Beating the Productivity Checker Using Embedded Languages
"... Abstract. Some total languages, like Agda and Coq, allow the use of guarded corecursion to construct infinite values and proofs. Guarded corecursion is a form of recursion in which arbitrary recursive calls are allowed, as long as they are guarded by a coinductive constructor. Guardedness ensures th ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
(Show Context)
Abstract. Some total languages, like Agda and Coq, allow the use of guarded corecursion to construct infinite values and proofs. Guarded corecursion is a form of recursion in which arbitrary recursive calls are allowed, as long as they are guarded by a coinductive constructor. Guardedness ensures that programs are productive, i.e. that every finite prefix of an infinite value can be computed in finite time. However, many productive programs are not guarded, and it can be nontrivial to put them in guarded form. This paper gives a method for turning a productive program into a guarded program. The method amounts to defining a problemspecific language as a data type, writing the program in the problemspecific language, and writing a guarded interpreter for this language. 1
Mixing Induction and Coinduction
, 2009
"... Purely inductive definitions give rise to treeshaped values where all branches have finite depth, and purely coinductive definitions give rise to values where all branches are potentially infinite. If this is too restrictive, then an alternative is to use mixed induction and coinduction. This techn ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Purely inductive definitions give rise to treeshaped values where all branches have finite depth, and purely coinductive definitions give rise to values where all branches are potentially infinite. If this is too restrictive, then an alternative is to use mixed induction and coinduction. This technique appears to be fairly unknown. The aim of this paper is to make the technique more widely known, and to present several new applications of it, including a parser combinator library which guarantees termination of parsing, and a method for combining coinductively defined inference systems with rules like transitivity. The developments presented in the paper have been formalised and checked in Agda, a dependently typed programming language and proof assistant.
Creative Commons Attribution License. Beating the Productivity Checker Using Embedded Languages
"... Some total languages, like Agda and Coq, allow the use of guarded corecursion to construct infinite values and proofs. Guarded corecursion is a form of recursion in which arbitrary recursive calls are allowed, as long as they are guarded by a coinductive constructor. Guardedness ensures that program ..."
Abstract
 Add to MetaCart
(Show Context)
Some total languages, like Agda and Coq, allow the use of guarded corecursion to construct infinite values and proofs. Guarded corecursion is a form of recursion in which arbitrary recursive calls are allowed, as long as they are guarded by a coinductive constructor. Guardedness ensures that programs are productive, i.e. that every finite prefix of an infinite value can be computed in finite time. However, many productive programs are not guarded, and it can be nontrivial to put them in guarded form. This paper gives a method for turning a productive program into a guarded program. The method amounts to defining a problemspecific language as a data type, writing the program in the problemspecific language, and writing a guarded interpreter for this language. 1