Results 1  10
of
37
PCF extended with real numbers
, 1996
"... We extend the programming language PCF with a type for (total and partial) real numbers. By a partial real number we mean an element of a cpo of intervals, whose subspace of maximal elements (singlepoint intervals) is homeomorphic to the Euclidean real line. We show that partial real numbers can be ..."
Abstract

Cited by 47 (15 self)
 Add to MetaCart
We extend the programming language PCF with a type for (total and partial) real numbers. By a partial real number we mean an element of a cpo of intervals, whose subspace of maximal elements (singlepoint intervals) is homeomorphic to the Euclidean real line. We show that partial real numbers can be considered as “continuous words”. Concatenation of continuous words corresponds to refinement of partial information. The usual basic operations cons, head and tail used to explicitly or recursively define functions on words generalize to partial real numbers. We use this fact to give an operational semantics to the above referred extension of PCF. We prove that the operational semantics is sound and complete with respect to the denotational semantics. A program of real number type evaluates to a headnormal form iff its value is different from ⊥; if its value is different from ⊥ then it successively evaluates to headnormal forms giving better and better partial results converging to its value.
A Relationship between Equilogical Spaces and Type Two Effectivity
"... In this paper I compare two well studied approaches to topological semantics the domaintheoretic approach, exemplied by the category of countably based equilogical spaces, Equ, and Type Two Eectivity, exemplied by the category of Baire space representations, Rep(B ). These two categories are both ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
In this paper I compare two well studied approaches to topological semantics the domaintheoretic approach, exemplied by the category of countably based equilogical spaces, Equ, and Type Two Eectivity, exemplied by the category of Baire space representations, Rep(B ). These two categories are both locally cartesian closed extensions of countably based T 0 spaces. A natural question to ask is how they are related.
RZ: A tool for bringing constructive and computable mathematics closer to programming practice
 CiE 2007: Computation and Logic in the Real World, volume 4497 of LNCS
, 2007
"... Abstract. Realizability theory can produce code interfaces for the data structure corresponding to a mathematical theory. Our tool, called RZ, serves as a bridge between constructive mathematics and programming by translating specifications in constructive logic into annotated interface code in Obje ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
Abstract. Realizability theory can produce code interfaces for the data structure corresponding to a mathematical theory. Our tool, called RZ, serves as a bridge between constructive mathematics and programming by translating specifications in constructive logic into annotated interface code in Objective Caml. The system supports a rich input language allowing descriptions of complex mathematical structures. RZ does not extract code from proofs, but allows any implementation method, from handwritten code to code extracted from proofs by other tools. 1
Two constructive embeddingextension theorems with applications to continuity principles and to BanachMazur computability
 Mathematical Logic Quarterly
"... We prove two embedding and extension theorems in the context of the constructive theory of metric spaces. The first states that Cantor space embeds in any inhabited complete separable metric space (CSM) without isolated points, X, in such a way that every sequentially continuous function from Cantor ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
We prove two embedding and extension theorems in the context of the constructive theory of metric spaces. The first states that Cantor space embeds in any inhabited complete separable metric space (CSM) without isolated points, X, in such a way that every sequentially continuous function from Cantor space to Z extends to a sequentially continuous function from X to R. The second asserts an analogous property for Baire space relative to any inhabited locally noncompact CSM. Both results rely on having careful constructive formulations of the concepts involved. As a first application, we derive new relationships between “continuity principles ” asserting that all functions between specified metric spaces are pointwise continuous. In particular, we give conditions that imply the failure of the continuity principle “all functions from X to R are continuous”, when X is an inhabited CSM without isolated points, and when X is an inhabited locally noncompact CSM. One situation in which the latter case applies is in models based on “domain realizability”, in which the failure of the continuity principle for any inhabited locally noncompact CSM, X, generalizes a result previously obtained by Escardó and Streicher in the special case X = C[0, 1]. As a second application, we show that, when the notion of inhabited complete separable metric space without isolated points is interpreted in a recursiontheoretic setting, then, for any such space X, there exists a BanachMazur computable function from X to the computable real numbers that is not Markov computable. This generalizes a result obtained by Hertling in the special case that X is the space of computable real numbers.
Classical And Constructive Hierarchies In Extended Intuitionistic Analysis
"... This paper introduces an extension of Kleene's axiomatization of Brouwer's intuitionistic analysis, in which the classical arithmetical and analytical hierarchies are faithfully represented as hierarchies of the domains of continuity. A domain of continuity is a relation R(#) on Baire sp ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
This paper introduces an extension of Kleene's axiomatization of Brouwer's intuitionistic analysis, in which the classical arithmetical and analytical hierarchies are faithfully represented as hierarchies of the domains of continuity. A domain of continuity is a relation R(#) on Baire space with the property that every constructive partial functional defined on {# : R(#)} is continuous there. The domains of continuity for coincide with the stable relations (those equivalent in to their double negations), while every relation R(#) is equivalent in #) for some stable A(#, #) (which belongs to the classical analytical hierarchy). The logic of is intuitionistic. The axioms of include countable comprehension, bar induction, Troelstra's generalized continuous choice, primitive recursive Markov's Principle and a classical axiom of dependent choices proposed by Krauss. Constructive dependent choices, and constructive and classical countable choice, are theorems.
The Borel hierarchy and the projective hierarchy in intuitionistic mathematics
 University of Nijmegen Department of Mathematics
, 2001
"... ..."
Understanding and using Brouwer’s continuity principle
 Proceedings of a Symposium held in San Servolo/Venice
, 1999
"... ..."
Metric Spaces in Synthetic Topology
, 2010
"... We investigate the relationship between the synthetic approach to topology, in which every set is equipped with an intrinsic topology, and constructive theory of metric spaces. We relate the synthetic notion of compactness of Cantor space to Brouwer’s Fan Principle. We show that the intrinsic and me ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We investigate the relationship between the synthetic approach to topology, in which every set is equipped with an intrinsic topology, and constructive theory of metric spaces. We relate the synthetic notion of compactness of Cantor space to Brouwer’s Fan Principle. We show that the intrinsic and metric topologies of complete separable metric spaces coincide if they do so for Baire space. In Russian Constructivism the match between synthetic and metric topology breaks down, as even a very simple complete totally bounded space fails to be compact, and its topology is strictly finer than the metric topology. In contrast, in Brouwer’s intuitionism synthetic and metric notions of topology and compactness agree. 1