Results 1  10
of
35
Domains for Computation in Mathematics, Physics and Exact Real Arithmetic
 Bulletin of Symbolic Logic
, 1997
"... We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability dist ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability distributions. It is shown how these models have a logical and effective presentation and how they are used to give a computational framework in several areas in mathematics and physics. These include fractal geometry, where new results on existence and uniqueness of attractors and invariant distributions have been obtained, measure and integration theory, where a generalization of the Riemann theory of integration has been developed, and real arithmetic, where a feasible setting for exact computer arithmetic has been formulated. We give a number of algorithms for computation in the theory of iterated function systems with applications in statistical physics and in period doubling route to chao...
A DomainTheoretic Approach to Computability on the Real Line
, 1997
"... In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and ..."
Abstract

Cited by 43 (8 self)
 Add to MetaCart
In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and a framework and an implementation of a package for exact real number arithmetic. Based on recursion theory we present here a precise and direct formulation of effective representation of real numbers by continuous domains, which is equivalent to the representation of real numbers by algebraic domains as in the work of StoltenbergHansen and Tucker. We use basic ingredients of an effective theory of continuous domains to spell out notions of computability for the reals and for functions on the real line. We prove directly that our approach is equivalent to the established Turingmachine based approach which dates back to Grzegorczyk and Lacombe, is used by PourEl & Richards in their found...
A Computational Model for Metric Spaces
 Theoretical Computer Science
, 1995
"... For every metric space X , we define a continuous poset BX such that X is homeomorphic to the set of maximal elements of BX with the relative Scott topology. The poset BX is a dcpo iff X is complete, and !continuous iff X is separable. The computational model BX is used to give domaintheoretic pro ..."
Abstract

Cited by 42 (8 self)
 Add to MetaCart
For every metric space X , we define a continuous poset BX such that X is homeomorphic to the set of maximal elements of BX with the relative Scott topology. The poset BX is a dcpo iff X is complete, and !continuous iff X is separable. The computational model BX is used to give domaintheoretic proofs of Banach's fixed point theorem and of two classical results of Hutchinson: on a complete metric space, every hyperbolic iterated function system has a unique nonempty compact attractor, and every iterated function system with probabilities has a unique invariant measure with bounded support. We also show that the probabilistic power domain of BX provides an !continuous computational model for measure theory on a separable complete metric space X . 1 Introduction In this paper, we establish new connections between the theory of metric spaces and domain theory, the two basic mathematical structures in computer science. For every metric space X, we define a continuous poset (not necessar...
The Realizability Approach to Computable Analysis and Topology
, 2000
"... policies, either expressed or implied, of the NSF, NAFSA, or the U.S. government. ..."
Abstract

Cited by 41 (19 self)
 Add to MetaCart
policies, either expressed or implied, of the NSF, NAFSA, or the U.S. government.
Domain Representations of Topological Spaces
, 2000
"... A domain representation of a topological space X is a function, usually a quotient map, from a subset of a domain onto X . Several different classes of domain representations are introduced and studied. It is investigated when it is possible to build domain representations from existing ones. It is, ..."
Abstract

Cited by 25 (9 self)
 Add to MetaCart
A domain representation of a topological space X is a function, usually a quotient map, from a subset of a domain onto X . Several different classes of domain representations are introduced and studied. It is investigated when it is possible to build domain representations from existing ones. It is, for example, discussed whether there exists a natural way to build a domain representation of a product of topological spaces from given domain representations of the factors. It is shown that any T 0 topological space has a domain representation. These domain representations are very large. However, smaller domain representations are also constructed for large classes of spaces. For example, each second countable regular Hausdorff space has a domain representation with a countable base. Domain representations of functions and function spaces are also studied.
Computable Banach Spaces via Domain Theory
 Theoretical Computer Science
, 1998
"... This paper extends the ordertheoretic approach to computable analysis via continuous domains to complete metric spaces and Banach spaces. We employ the domain of formal balls to define a computability theory for complete metric spaces. For Banach spaces, the domain specialises to the domain of clos ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
This paper extends the ordertheoretic approach to computable analysis via continuous domains to complete metric spaces and Banach spaces. We employ the domain of formal balls to define a computability theory for complete metric spaces. For Banach spaces, the domain specialises to the domain of closed balls, ordered by reversed inclusion. We characterise computable linear operators as those which map computable sequences to computable sequences and are effectively bounded. We show that the domaintheoretic computability theory is equivalent to the wellestablished approach by PourEl and Richards. 1 Introduction This paper is part of a programme to introduce the theory of continuous domains as a new approach to computable analysis. Initiated by the various applications of continuous domain theory to modelling classical mathematical spaces and performing computations as outlined in the recent survey paper by Edalat [6], the authors started this work with [9] which was concerned with co...
Effective Domain Representations of H(X), the space of compact subsets
, 1999
"... This paper gives effective domain representations of spaces H(X) of nonempty compact subsets of effective complete metric spaces X. The domain representation of H(X) is constructed from a domain representation of X using the Plotkin power domain construction. As an application of the representation ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
This paper gives effective domain representations of spaces H(X) of nonempty compact subsets of effective complete metric spaces X. The domain representation of H(X) is constructed from a domain representation of X using the Plotkin power domain construction. As an application of the representation an effective version of a fundamental theorem on IFS (iterated function system) is shown.
Domain Representations of Partial Functions, with Applications to Spatial Objects and Constructive Volume Geometry
, 2000
"... A partial spatial object is a partial map from space to data. Data types of partial spatial objects are modelled by topological algebras of partial maps and are the foundation for a high level approach to volume graphics called constructive volume geometry (CVG), where space and data are subspaces o ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
A partial spatial object is a partial map from space to data. Data types of partial spatial objects are modelled by topological algebras of partial maps and are the foundation for a high level approach to volume graphics called constructive volume geometry (CVG), where space and data are subspaces of # dimensional Euclidean space. We investigate the computability of partial spatial object data types, in general and in volume graphics, using the theory of effective domain representations for topological algebras. The basic mathematical problem considered is to classify which partial functions between topological spaces can be represented by total continuous functions between given domain representations of the spaces. We prove theorems about partial functions on regular Hausdorff spaces and their domain representations, and apply the results to partial spatial objects and CVG algebras.
Reducibility of Domain Representations and CantorWeihrauch Domain Representations
, 2006
"... We introduce a notion of reducibility of representations of topological spaces and study some basic properties of this notion for domain representations. A representation reduces to another if its representing map factors through the other representation. Reductions form a preorder on representatio ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
We introduce a notion of reducibility of representations of topological spaces and study some basic properties of this notion for domain representations. A representation reduces to another if its representing map factors through the other representation. Reductions form a preorder on representations. A spectrum is a class of representations divided by the equivalence relation induced by reductions. We establish some basic properties of spectra, such as, nontriviality. Equivalent representations represent the same set of functions on the represented space. Within a class of representations, a representation is universal if all representations in the class reduce to it. We show that notions of admissibility, considered both for domains and within Weihrauch’s TTE, are universality concepts in the appropriate spectra. Viewing TTE representations as domain representations, the reduction notion here is a natural generalisation of the one from TTE. To illustrate the framework, we consider some domain representations of real numbers and show that the usual interval domain representation, which is universal among dense representations, does not reduce to various Cantor domain representations. On the other hand, however, we show that a substructure of the interval domain more suitable for efficient computation of operations is equivalent to the usual interval domain with respect to reducibility. 1.
Quantum Domain Theory  Definitions and Applications
 Proceedings of CCA’03
, 2003
"... Domain theory is a branch of classical computer science. It has proven to be a rigourous mathematical structure to describe denotational semantics for programming languages and to study the computability of partial functions. In this paper, we study the extension of domain theory to the quantum sett ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Domain theory is a branch of classical computer science. It has proven to be a rigourous mathematical structure to describe denotational semantics for programming languages and to study the computability of partial functions. In this paper, we study the extension of domain theory to the quantum setting. By defining a quantum domain we introduce a rigourous definition of quantum computability for quantum states and operators. Furthermore we show that the denotational semantics of quantum computation has the same structure as the denotational semantics of classical probabilistic computation introduced by Kozen [23]. Finally, we briefly review a recent result on the application of quantum domain theory to quantum information processing. 1