Results 1  10
of
56
Making Data Structures Persistent
, 1989
"... This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any t ..."
Abstract

Cited by 250 (6 self)
 Add to MetaCart
This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any time. We develop simple, systematic, and effiient techniques for making linked data structures persistent. We use our techniques to devise persistent forms of binary search trees with logarithmic access, insertion, and deletion times and O(1) space bounds for insertion and deletion.
Randomized Search Trees
 ALGORITHMICA
, 1996
"... We present a randomized strategy for maintaining balance in dynamically changing search trees that has optimal expected behavior. In particular, in the expected case a search or an update takes logarithmic time, with the update requiring fewer than two rotations. Moreover, the update time remains ..."
Abstract

Cited by 139 (1 self)
 Add to MetaCart
We present a randomized strategy for maintaining balance in dynamically changing search trees that has optimal expected behavior. In particular, in the expected case a search or an update takes logarithmic time, with the update requiring fewer than two rotations. Moreover, the update time remains logarithmic, even if the cost of a rotation is taken to be proportional to the size of the rotated subtree. Finger searches and splits and joins can be performed in optimal expected time also. We show that these results continue to hold even if very little true randomness is available, i.e. if only a logarithmic number of truely random bits are available. Our approach generalizes naturally to weighted trees, where the expected time bounds for accesses and updates again match the worst case time bounds of the best deterministic methods. We also discuss ways of implementing our randomized strategy so that no explicit balance information is maintained. Our balancing strategy and our alg...
Cacheoblivious Btrees
, 2000
"... Abstract. This paper presents two dynamic search trees attaining nearoptimal performance on any hierarchical memory. The data structures are independent of the parameters of the memory hierarchy, e.g., the number of memory levels, the blocktransfer size at each level, and the relative speeds of me ..."
Abstract

Cited by 135 (22 self)
 Add to MetaCart
Abstract. This paper presents two dynamic search trees attaining nearoptimal performance on any hierarchical memory. The data structures are independent of the parameters of the memory hierarchy, e.g., the number of memory levels, the blocktransfer size at each level, and the relative speeds of memory levels. The performance is analyzed in terms of the number of memory transfers between two memory levels with an arbitrary blocktransfer size of B; this analysis can then be applied to every adjacent pair of levels in a multilevel memory hierarchy. Both search trees match the optimal search bound of Θ(1+logB+1 N) memory transfers. This bound is also achieved by the classic Btree data structure on a twolevel memory hierarchy with a known blocktransfer size B. The first search tree supports insertions and deletions in Θ(1 + logB+1 N) amortized memory transfers, which matches the Btree’s worstcase bounds. The second search tree supports scanning S consecutive elements optimally in Θ(1 + S/B) memory transfers and supports insertions and deletions in Θ(1 + logB+1 N + log2 N) amortized memory transfers, matching the performance of the Btree for B = B Ω(log N log log N).
Optimal Dynamic Interval Management in External Memory (Extended Abstract))
 IN PROC. IEEE SYMP. ON FOUNDATIONS OF COMP. SCI
, 1996
"... We present a space and I/Ooptimal externalmemory data structure for answering stabbing queries on a set of dynamically maintained intervals. Our data structure settles an open problem in databases and I/O algorithms by providing the first optimal externalmemory solution to the dynamic interval m ..."
Abstract

Cited by 85 (23 self)
 Add to MetaCart
We present a space and I/Ooptimal externalmemory data structure for answering stabbing queries on a set of dynamically maintained intervals. Our data structure settles an open problem in databases and I/O algorithms by providing the first optimal externalmemory solution to the dynamic interval management problem, which is a special case of 2dimensional range searching and a central problem for objectoriented and temporal databases and for constraint logic programming. Our data structure simultaneously uses optimal linear space (that is, O(N/B) blocks of disk space) and achieves the optimal O(log B N + T/B) I/O query bound and O(log B N ) I/O update bound, where B is the I/O block size and T the number of elements in the answer to a query. Our structure is also the first optimal external data structure for a 2dimensional range searching problem that has worstcase as opposed to amortized update bounds. Part of the data structure uses a novel balancing technique for efficient worstcase manipulation of balanced trees, which is of independent interest.
External Memory Data Structures
, 2001
"... In many massive dataset applications the data must be stored in space and query efficient data structures on external storage devices. Often the data needs to be changed dynamically. In this chapter we discuss recent advances in the development of provably worstcase efficient external memory dynami ..."
Abstract

Cited by 81 (36 self)
 Add to MetaCart
In many massive dataset applications the data must be stored in space and query efficient data structures on external storage devices. Often the data needs to be changed dynamically. In this chapter we discuss recent advances in the development of provably worstcase efficient external memory dynamic data structures. We also briefly discuss some of the most popular external data structures used in practice.
A LocalityPreserving CacheOblivious Dynamic Dictionary
, 2002
"... This paper presents a simple dictionary structure designed for a hierarchical memory. The proposed data structure is cache oblivious and locality preserving. A cacheoblivious data structure has memory performance optimized for all levels of the memory hierarchy even though it has no memoryhierarc ..."
Abstract

Cited by 73 (21 self)
 Add to MetaCart
This paper presents a simple dictionary structure designed for a hierarchical memory. The proposed data structure is cache oblivious and locality preserving. A cacheoblivious data structure has memory performance optimized for all levels of the memory hierarchy even though it has no memoryhierarchyspeci c parameterization. A localitypreserving dictionary maintains elements of similar key values stored close together for fast access to ranges of data with consecutive keys.
Two simplified algorithms for maintaining order in a list
 PROCEEDINGS OF THE 10TH ANNUAL EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA
, 2002
"... In the OrderMaintenance Problem, the objective is to maintain a total order subject to insertions, deletions, and precedence queries. Known optimal solutions, due to Dietz and Sleator, are complicated. We present new algorithms that match the bounds of Dietz and Sleator. Our solutions are simple, ..."
Abstract

Cited by 62 (9 self)
 Add to MetaCart
In the OrderMaintenance Problem, the objective is to maintain a total order subject to insertions, deletions, and precedence queries. Known optimal solutions, due to Dietz and Sleator, are complicated. We present new algorithms that match the bounds of Dietz and Sleator. Our solutions are simple, and we present experimental evidence that suggests that they are superior in practice.
Efficient ExternalMemory Data Structures and Applications
, 1996
"... In this thesis we study the Input/Output (I/O) complexity of largescale problems arising e.g. in the areas of database systems, geographic information systems, VLSI design systems and computer graphics, and design I/Oefficient algorithms for them. A general theme in our work is to design I/Oeffic ..."
Abstract

Cited by 38 (12 self)
 Add to MetaCart
In this thesis we study the Input/Output (I/O) complexity of largescale problems arising e.g. in the areas of database systems, geographic information systems, VLSI design systems and computer graphics, and design I/Oefficient algorithms for them. A general theme in our work is to design I/Oefficient algorithms through the design of I/Oefficient data structures. One of our philosophies is to try to isolate all the I/O specific parts of an algorithm in the data structures, that is, to try to design I/O algorithms from internal memory algorithms by exchanging the data structures used in internal memory with their external memory counterparts. The results in the thesis include a technique for transforming an internal memory tree data structure into an external data structure which can be used in a batched dynamic setting, that is, a setting where we for example do not require that the result of a search operation is returned immediately. Using this technique we develop batched dynamic external versions of the (onedimensional) rangetree and the segmenttree and we develop an external priority queue. Following our general philosophy we show how these structures can be used in standard internal memory sorting algorithms
Optimal External Memory Interval Management
, 2002
"... In this paper we present the external interval tree, an optimal external memory data structure for answering stabbing queries on a set of dynamically maintained intervals. The external interval tree can be used in an optimal solution to the dynamic interval management problem, which is a central pro ..."
Abstract

Cited by 32 (6 self)
 Add to MetaCart
In this paper we present the external interval tree, an optimal external memory data structure for answering stabbing queries on a set of dynamically maintained intervals. The external interval tree can be used in an optimal solution to the dynamic interval management problem, which is a central problem for objectoriented and temporal databases and for constraint logic programming. Part of the structure uses a novel weightbalancing technique for efficient worstcase manipulation of balanced trees of independent interest. The external interval tree, as well at our new balancing technique, have recently been used to develop several efficient external data structures.
Deciding Bisimilarity and Similarity for Probabilistic Processes
, 2000
"... This paper deals with probabilistic and nondeterministic processes represented by a variant of labelled transition systems where any outgoing transition of a state s is augmented with probabilities for the possible successor states. Our main contribution are algorithms for computing the bisimulatio ..."
Abstract

Cited by 25 (4 self)
 Add to MetaCart
This paper deals with probabilistic and nondeterministic processes represented by a variant of labelled transition systems where any outgoing transition of a state s is augmented with probabilities for the possible successor states. Our main contribution are algorithms for computing the bisimulation equivalence classes as introduced by Larsen & Skou [44] and the simulation preorder `a la Segala & Lynch [57]. The algorithm for deciding bisimilarity is based on a variant of the traditional partitioning technique [43, 51] and runs in time O(mn(log m+ log n)) where m is the number of transitions and n the number of states. The main idea for computing the simulation preorder is the reduction to maximum flow problems in suitable networks. Using the method of Cheriyan, Hagerup & Mehlhorn [15] for computing the maximum flow, the algorithm runs in time O((mn 6 +m 2 n 3 )= log n). Moreover, we show that the networkbased technique is also applicable to compute the simulationlike relation...