Results 1 - 10
of
790
Image registration methods: a survey.
, 2003
"... Abstract This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrical ..."
Abstract
-
Cited by 760 (10 self)
- Add to MetaCart
(Show Context)
Abstract This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align two images (the reference and sensed images). The reviewed approaches are classified according to their nature (areabased and feature-based) and according to four basic steps of image registration procedure: feature detection, feature matching, mapping function design, and image transformation and resampling. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of image registration and outlook for the future research are discussed too. The major goal of the paper is to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas. q
Nonrigid registration using free-form deformations: Application to breast MR images
- IEEE Transactions on Medical Imaging
, 1999
"... Abstract — In this paper we present a new approach for the nonrigid registration of contrast-enhanced breast MRI. A hierarchical transformation model of the motion of the breast has been developed. The global motion of the breast is modeled by an affine transformation while the local breast motion i ..."
Abstract
-
Cited by 697 (36 self)
- Add to MetaCart
(Show Context)
Abstract — In this paper we present a new approach for the nonrigid registration of contrast-enhanced breast MRI. A hierarchical transformation model of the motion of the breast has been developed. The global motion of the breast is modeled by an affine transformation while the local breast motion is described by a free-form deformation (FFD) based on B-splines. Normalized mutual information is used as a voxel-based similarity measure which is insensitive to intensity changes as a result of the contrast enhancement. Registration is achieved by minimizing a cost function, which represents a combination of the cost associated with the smoothness of the transformation and the cost associated with the image similarity. The algorithm has been applied to the fully automated registration of three-dimensional (3-D) breast MRI in volunteers and patients. In particular, we have compared the results of the proposed nonrigid registration algorithm to those obtained using rigid and affine registration techniques. The results clearly indicate that the nonrigid registration algorithm is much better able to recover the motion and deformation of the breast than rigid or affine registration algorithms. I.
A Survey of Medical Image Registration
, 1998
"... The purpose of this chapter is to present a survey of recent publications concerning medical image registration techniques. These publications will be classified according to a model based on nine salient criteria, the main dichotomy of which is extrinsic versus intrinsic methods The statistics of t ..."
Abstract
-
Cited by 548 (5 self)
- Add to MetaCart
The purpose of this chapter is to present a survey of recent publications concerning medical image registration techniques. These publications will be classified according to a model based on nine salient criteria, the main dichotomy of which is extrinsic versus intrinsic methods The statistics of the classification show definite trends in the evolving registration techniques, which will be discussed. At this moment, the bulk of interesting intrinsic methods is either based on segmented points or surfaces, or on techniques endeavoring to use the full information content of the images involved.
Mutual-information-based registration of medical images: a survey
- IEEE TRANSCATIONS ON MEDICAL IMAGING
, 2003
"... An overview is presented of the medical image processing literature on mutual-information-based registration. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific ..."
Abstract
-
Cited by 302 (3 self)
- Add to MetaCart
(Show Context)
An overview is presented of the medical image processing literature on mutual-information-based registration. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. Methods are classified according to the different aspects of mutual-information-based registration. The main division is in aspects of the methodology and of the application. The part on methodology describes choices made on facets such as preprocessing of images, gray value interpolation, optimization, adaptations to the mutual information measure, and different types of geometrical transformations. The part on applications is a reference of the literature available on different modalities, on interpatient registration and on different anatomical objects. Comparison studies including mutual information are also considered. The paper starts with a description of entropy and mutual information and it closes with a discussion on past achievements and some future challenges.
Automated model-based tissue classification of MR images of the brain
, 1999
"... We describe a fully automated method for model-based tissue classification of Magnetic Resonance (MR) images of the brain. The method interleaves classification with estimation of the model parameters, improving the classification at each iteration. The algorithm is able to segment single- and multi ..."
Abstract
-
Cited by 214 (14 self)
- Add to MetaCart
(Show Context)
We describe a fully automated method for model-based tissue classification of Magnetic Resonance (MR) images of the brain. The method interleaves classification with estimation of the model parameters, improving the classification at each iteration. The algorithm is able to segment single- and multi-spectral MR images, corrects for MR signal inhomogeneities and incorporates contextual information by means of Markov Random Fields. A digital brain atlas containing prior expectations about the spatial location of tissue classes is used to initialize the algorithm. This makes the method fully automated and therefore provides objective and reproducible segmentations. We have validated the technique on simulated as well as on real MR images of the brain.
Consistent Image Registration
, 2001
"... This paper presents a new method for image registration based on jointly estimating the forward and reverse transformations between two images while constraining these transforms to be inverses of one another. This approach produces a consistent set of transformations that have less pairwise registr ..."
Abstract
-
Cited by 161 (10 self)
- Add to MetaCart
This paper presents a new method for image registration based on jointly estimating the forward and reverse transformations between two images while constraining these transforms to be inverses of one another. This approach produces a consistent set of transformations that have less pairwise registration error, i.e., better correspondence, than traditional methods that estimate the forward and reverse transformations independently. The transformations are estimated iteratively and are restricted to preserve topology by constraining them to obey the laws of continuum mechanics. The transformations are parameterized by a Fourier series to diagonalize the covariance structure imposed by the continuum mechanics constraints and to provide a computationally efficient numerical implementation. Results using a linear elastic material constraint are presented using both magnetic resonance and X-ray computed tomography image data. The results show that the joint estimation of a consistent set of forward and reverse transformations constrained by linear-elasticity give better registration results than using either constraint alone or none at all.
Optimization of Mutual Information for Multiresolution Image Registration
- IEEE Transactions on Image Processing
, 2000
"... We propose a new method for the intermodal registration of images using a criterion known as mutual information. Our main contribution is an optimizer that we specifically designed for this criterion. We show that this new optimizer is well adapted to a multiresolution approach because it typically ..."
Abstract
-
Cited by 146 (6 self)
- Add to MetaCart
We propose a new method for the intermodal registration of images using a criterion known as mutual information. Our main contribution is an optimizer that we specifically designed for this criterion. We show that this new optimizer is well adapted to a multiresolution approach because it typically converges in fewer criterion evaluations than other optimizers. We have built a multiresolution image pyramid, along with an interpolation process, an optimizer, and the criterion itself, around the unifying concept of spline-processing. This ensures coherence in the way we model data and yields good performance. We have tested our approach in a variety of experimental conditions and report excellent results. We claim an accuracy of about a hundredth of a pixel under ideal conditions. We are also robust since the accuracy is still about a tenth of a pixel under very noisy conditions. In addition, a blind evaluation of our results compares very favorably to the work of several other researchers.