Results 1 - 10
of
12
Recoverable robust knapsacks: Γ-scenarios
- in Proceedings of INOC 2011, International Network Optimization Conference
, 2011
"... Abstract In this paper, we investigate the recoverable robust knapsack problem, where the uncertainty of the item weights follows the approach of Bertsimas and Sim [3, 4]. In contrast to the robust approach, a limited recovery action is allowed, i.e., upto k items may be removed when the actual weig ..."
Abstract
-
Cited by 5 (0 self)
- Add to MetaCart
(Show Context)
Abstract In this paper, we investigate the recoverable robust knapsack problem, where the uncertainty of the item weights follows the approach of Bertsimas and Sim [3, 4]. In contrast to the robust approach, a limited recovery action is allowed, i.e., upto k items may be removed when the actual weights are known. This problem is motivated by the assignment of traffic nodes to antennas in wireless network planning. Starting from an exponential min-max optimization model, we derive an integer linear programming formulation of quadratic size. In a preliminary computational study, we evaluate the gain of recovery using realistic planning data. 1
Recoverable robustness by column generation
, 2011
"... Real-life planning problems are often complicated by the occurrence of disturbances, which imply that the original plan cannot be followed anymore and some recovery action must be taken to cope with the disturbance. In such a situation it is worthwhile to arm yourself against common disturbances. ..."
Abstract
-
Cited by 5 (2 self)
- Add to MetaCart
Real-life planning problems are often complicated by the occurrence of disturbances, which imply that the original plan cannot be followed anymore and some recovery action must be taken to cope with the disturbance. In such a situation it is worthwhile to arm yourself against common disturbances. Well-known approaches to create plans that take possible, common disturbances into account are robust optimization and stochastic programming. Recently, a new approach has been developed that combines the best of these two: recoverable robustness. In this paper, we apply the technique of column generation to find solutions to recoverable robustness problems. We consider two types of solution approaches: separate recovery and combined recovery. We show our approach on two example problems: the size robust knapsack problem, in which the knapsack size may get reduced, and the demand robust shortest path problem, in which the sink is uncertain and the cost of edges may increase.
Planning wireless networks with demand uncertainty using robust optimization
- IN: PROCEEDINGS OF INTERNATIONAL NETWORK OPTIMIZATION CONFERENCE, INOC
, 2011
"... An optimal planning of future wireless networks is fundamental to satisfy rising traffic demands jointly with the utilization of sophisticated techniques, such as OFDMA. Current methods for this task require a static model of the problem. However, uncertainty of data arises frequently in wireless ..."
Abstract
-
Cited by 2 (1 self)
- Add to MetaCart
(Show Context)
An optimal planning of future wireless networks is fundamental to satisfy rising traffic demands jointly with the utilization of sophisticated techniques, such as OFDMA. Current methods for this task require a static model of the problem. However, uncertainty of data arises frequently in wireless networks, e. g., fluctuating bit rate requirements. In this paper, robust optimization is applied to deal with uncertainty in the framework of optimization models. We propose a mathematical formulation for the planning of wireless networks with demand uncertainy. Furthermore, computational results are presented to compare the robust formulation to its deterministic counterpart. The price of robustness is demonstrated regarding key parameters of networks that are subject to uncertainty.
Exact Solution of the Robust Knapsack Problem
"... We consider an uncertain variant of the knapsack problem in which the weight of the items is not exactly known in advance, but belongs to a given interval, and an upper bound is imposed on the number of items whose weight differs from the expected one. For this problem, we provide a dynamic program ..."
Abstract
-
Cited by 1 (1 self)
- Add to MetaCart
We consider an uncertain variant of the knapsack problem in which the weight of the items is not exactly known in advance, but belongs to a given interval, and an upper bound is imposed on the number of items whose weight differs from the expected one. For this problem, we provide a dynamic programming algorithm and present techniques aimed at reducing its space and time complexities. Finally, we computationally compare the performances of the proposed algorithm with those of different exact algorithms presented so far in the literature for robust optimization problems.
Recoverable Robust Timetable Information ∗
, 2013
"... Timetable information is the process of determining a suitable travel route for a passenger. Due to delays in the original timetable, in practice it often happens that the travel route cannot be used as originally planned. For a passenger being already en route, it would hence be useful to know abou ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
Timetable information is the process of determining a suitable travel route for a passenger. Due to delays in the original timetable, in practice it often happens that the travel route cannot be used as originally planned. For a passenger being already en route, it would hence be useful to know about alternatives that ensure that his/her destination can be reached. In this work we propose a recoverable robust approach to timetable information; i.e., we aim at finding travel routes that can easily be updated when delays occur during the journey. We present polynomial-time algorithms for this problem and evaluate the performance of the routes obtained this way on schedule data of the German train network of 2013 and simulated delay scenarios.
Instance-sensitive robustness guarantees for sequencing with unknown packing and covering constraints
, 2012
"... ..."
Packing a Knapsack of Unknown Capacity
"... We study the problem of packing a knapsack without knowing its capacity. Whenever we attempt to pack an item that does not fit, the item is discarded; if the item fits, we have to include it in the packing. We show that there is always a policy that packs a value within factor 2 of the optimum packi ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
We study the problem of packing a knapsack without knowing its capacity. Whenever we attempt to pack an item that does not fit, the item is discarded; if the item fits, we have to include it in the packing. We show that there is always a policy that packs a value within factor 2 of the optimum packing, irrespective of the actual capacity. If all items have unit density, we achieve a factor equal to the golden ratio ϕ ≈ 1.618. Both factors are shown to be best possible. In fact, we obtain the above factors using packing policies that are universal in the sense that they fix a particular order of the items and try to pack the items in this order, independent of the observations made while packing. We give efficient algorithms computing these policies. On the other hand, we show that, for any α> 1, the problem of deciding whether a given universal policy achieves a factor of α is coNP-complete. If α is part of the input, the same problem is shown to be coNP-complete for items with unit densities. Finally, we show that it is coNP-hard to decide, for given α, whether a set of items admits a universal policy with factor α, even if all items have unit densities.