Results 1 - 10
of
639
A High-Throughput Path Metric for Multi-Hop Wireless Routing
, 2003
"... This paper presents the expected transmission count metric (ETX), which finds high-throughput paths on multi-hop wireless networks. ETX minimizes the expected total number of packet transmissions (including retransmissions) required to successfully deliver a packet to the ultimate destination. The E ..."
Abstract
-
Cited by 1108 (5 self)
- Add to MetaCart
(Show Context)
This paper presents the expected transmission count metric (ETX), which finds high-throughput paths on multi-hop wireless networks. ETX minimizes the expected total number of packet transmissions (including retransmissions) required to successfully deliver a packet to the ultimate destination. The ETX metric incorporates the effects of link loss ratios, asymmetry in the loss ratios between the two directions of each link, and interference among the successive links of a path. In contrast, the minimum hop-count metric chooses arbitrarily among the different paths of the same minimum length, regardless of the often large differences in throughput among those paths, and ignoring the possibility that a longer path might offer higher throughput. This
Wireless mesh networks: a survey
- COMPUTER NETWORKS
, 2005
"... Wireless meshnet8Ex8 (WMNs)consist of meshrout6L and meshclient8 where meshroutfix have minimal mobilit and formtr backbone of WMNs. They provide netide access for bot mesh andconvent1)fi8 clientt TheintL gratLfl of WMNs wit ot8 net8866 such as t1Int6fiPx1 cellular, IEEE 802.11, IEEE 802.15, IEEE 8 ..."
Abstract
-
Cited by 687 (12 self)
- Add to MetaCart
Wireless meshnet8Ex8 (WMNs)consist of meshrout6L and meshclient8 where meshroutfix have minimal mobilit and formtr backbone of WMNs. They provide netide access for bot mesh andconvent1)fi8 clientt TheintL gratLfl of WMNs wit ot8 net8866 such as t1Int6fiPx1 cellular, IEEE 802.11, IEEE 802.15, IEEE 802.16, sensor netsor1L ets can be accomplishedtccomp tc gatomp and bridging functng1 in t1 meshroutfijx Meshclient can be eit8fi st8fij1)6x or mobile, and can form aclient meshnet16S amongtng1fifiELj and wit meshroutLfifi WMNs are antLfifl1)6fl t resolvets limit18fiflfl andt significantfl improvetp performance of ad hocnetLEP8L wireless local area net1Pxx (WLANs), wireless personal areanet16fij (WPANs), and wirelessmetess1fifljfl areanet1LPS (WMANs). They are undergoing rapid progress and inspiring numerousdeploymentS WMNs will deliver wireless services for a largevariet ofapplicat6fifl in personal, local, campus, andmet8Lfix1)6fi areas. Despit recent advances in wireless mesh netjLfiP1)6 many research challenges remain in allprotjfiS layers. This paperpresent adetEfl81 stEonrecent advances and open research issues in WMNs. Syst1 architL881)6 andapplicat)68 of WMNs are described, followed by discussingts critssi factss influencingprotenc design.Theoret8fiL netore capacit and tdst1LLSjx tt1LL protLLSj for WMNs are exploredwit anobjectE1 t point out a number of open research issues. Finally,tnal beds,indust681 pract68 andcurrent strent actntx1) relatt t WMNs arehighlight8x # 2004 Elsevier B.V. Allrl rl KedI7-8 Wireless meshnet186flfl Ad hocnet8jEES Wireless sensornetor16fl Medium accessconts1fi Routs1 prots1fiS Transport protspor ScalabilitS Securiti Powermanagement andcontfi8fl Timingsynchronizat ion 1389-1286/$ - seefront matt # 2004 Elsevier B.V. Allright reserved. doi:10....
Routing in multi-radio, multi-hop wireless mesh networks
- In ACM MobiCom
, 2004
"... ..."
(Show Context)
Link-level Measurements from an 802.11b Mesh Network
- In SIGCOMM
, 2004
"... This paper anal yzes the causes of packetl oss in a 38-node urban mul ti-hop 802.11b network. The patterns and causes oflv# are important in the design of routing and errorcorrection proto colv as wel as in networkplqq"(v The paper makes the fol l owing observations. The distribution of inter-n ..."
Abstract
-
Cited by 567 (11 self)
- Add to MetaCart
(Show Context)
This paper anal yzes the causes of packetl oss in a 38-node urban mul ti-hop 802.11b network. The patterns and causes oflv# are important in the design of routing and errorcorrection proto colv as wel as in networkplqq"(v The paper makes the fol l owing observations. The distribution of inter-nodel oss rates is rel'RfivD' uniform over the wh ol range oflv$ rates; there is no clq$ threshol separating "in range" and "out of range." Mostls ks have relj tivel stabl el oss rates from one second to the next, though a smal l minority have very burstyl osses at that time scal e. Sign al to-noise ratio and distance have lv tl e predictive val e forl oss rate. Thel arge number of lv ks with intermediate l oss rates is probabl y due to mul ti-path fading rather than attenuation or interference. The phenomena discussed here are al l wel l -known. The contributions of this paper are an understanding of their rel ative importance, of how they interact, and of the impl ications for MAC and routing protocol design.
Gossip-based ad hoc routing
, 2002
"... Many ad hoc routing protocols are based on some variant of flooding. Despite various optimizations, many routing messages are propagated unnecessarily. We propose a gossiping-based approach, where each node forwards a message with some probability, to reduce the overhead of the routing protocols. G ..."
Abstract
-
Cited by 379 (4 self)
- Add to MetaCart
Many ad hoc routing protocols are based on some variant of flooding. Despite various optimizations, many routing messages are propagated unnecessarily. We propose a gossiping-based approach, where each node forwards a message with some probability, to reduce the overhead of the routing protocols. Gossiping exhibits bimodal behavior in sufficiently large networks: in some executions, the gossip dies out quickly and hardly any node gets the message; in the remaining executions, a substantial fraction of the nodes gets the message. The fraction of execution s in which most nodes get the message depends on the gossiping probability a nd the topology of the network. In the networks we have considered, using gossiping probability between 0.6 and 0.8 suffices to ensure that almost every node gets the message in almost every execution. For large networks, this simple gossiping protocol uses up to 35 % fewer messages than flooding, with improved performance. Gossiping can also be combined with various optimizations of flooding to yield further benefits. Simulations show that adding gossiping to AODV results in significant performance improvement, even in networks as small as 150 nodes. We expect that the improvement should be even more significant in larger networks.
Collection Tree Protocol.
- Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys’09),
, 2009
"... Abstract This paper presents and evaluates two principles for wireless routing protocols. The first is datapath validation: data traffic quickly discovers and fixes routing inconsistencies. The second is adaptive beaconing: extending the Trickle algorithm to routing control traffic reduces route re ..."
Abstract
-
Cited by 339 (16 self)
- Add to MetaCart
(Show Context)
Abstract This paper presents and evaluates two principles for wireless routing protocols. The first is datapath validation: data traffic quickly discovers and fixes routing inconsistencies. The second is adaptive beaconing: extending the Trickle algorithm to routing control traffic reduces route repair latency and sends fewer beacons. We evaluate datapath validation and adaptive beaconing in CTP Noe, a sensor network tree collection protocol. We use 12 different testbeds ranging in size from 20-310 nodes, comprising seven platforms, and six different link layers, on both interference-free and interference-prone channels. In all cases, CTP Noe delivers > 90% of packets. Many experiments achieve 99.9%. Compared to standard beaconing, CTP Noe sends 73% fewer beacons while reducing topology repair latency by 99.8%. Finally, when using low-power link layers, CTP Noe has duty cycles of 3% while supporting aggregate loads of 30 packets/minute.
Architecture and Evaluation of an Unplanned 802.11b Mesh Network
, 2005
"... This paper evaluates the ability of a wireless mesh architecture to provide high performance Internet access while demanding little deployment planning or operational management. The architecture considered in this paper has unplanned node placement (rather than planned topology), omni-directional a ..."
Abstract
-
Cited by 332 (1 self)
- Add to MetaCart
(Show Context)
This paper evaluates the ability of a wireless mesh architecture to provide high performance Internet access while demanding little deployment planning or operational management. The architecture considered in this paper has unplanned node placement (rather than planned topology), omni-directional antennas (rather than directional links), and multi-hop routing (rather than single-hop base stations). These design decisions contribute to ease of deployment, an important requirement for community wireless networks. However, this architecture carries the risk that lack of planning might render the network’s performance unusably low. For example, it might be necessary to place nodes carefully to ensure connectivity; the omni-directional antennas might provide uselessly short radio ranges; or the inefficiency of multi-hop forwarding might leave some users effectively disconnected. The paper evaluates this unplanned mesh architecture with a case study of the Roofnet 802.11b mesh network. Roofnet consists of 37 nodes spread over four square kilometers of an urban area. The network provides users with usable performance despite lack of planning: the average inter-node throughput is 627 kbits/second, even though the average route has three hops. The paper evaluates multiple aspects of the architecture: the effect of node density on connectivity and throughput; the characteristics of the links that the routing protocol elects to use; the usefulness of the highly connected mesh afforded by omni-directional antennas for robustness and throughput; and the potential performance of a single-hop network using the same nodes as Roofnet.
Topology Control in Wireless Ad Hoc and Sensor Networks
- ACM Computing Surveys
, 2005
"... Topology Control (TC) is one of the most important techniques used in wireless ad hoc and sensor networks to reduce energy consumption (which is essential to extend the network operational time) and radio interference (with a positive effect on the network traffic carrying capacity). The goal of thi ..."
Abstract
-
Cited by 304 (4 self)
- Add to MetaCart
Topology Control (TC) is one of the most important techniques used in wireless ad hoc and sensor networks to reduce energy consumption (which is essential to extend the network operational time) and radio interference (with a positive effect on the network traffic carrying capacity). The goal of this technique is to control the topology of the graph representing the communication links between network nodes with the purpose of maintaining some global graph property (e.g., connectivity), while reducing energy consumption and/or interference that are strictly related to the nodes ’ transmitting range. In this article, we state several problems related to topology control in wireless ad hoc and sensor networks, and we survey state-of-the-art solutions which have been proposed to tackle them. We also outline several directions for further research which we hope will motivate researchers to undertake additional studies in this field.
CODA: Congestion detection and avoidance in sensor networks
, 2003
"... Event-driven sensor networks operate under an idle or light load and then suddenly become active in response to a detected or monitored event. The transport of event impulses is likely to lead to varying degrees of congestion in the network depending on the sensing application. It is during these pe ..."
Abstract
-
Cited by 244 (9 self)
- Add to MetaCart
(Show Context)
Event-driven sensor networks operate under an idle or light load and then suddenly become active in response to a detected or monitored event. The transport of event impulses is likely to lead to varying degrees of congestion in the network depending on the sensing application. It is during these periods of event impulses that the likelihood of congestion is greatest and the information in transit of most importance to users. To address this challenge we propose an energy efficient congestion control scheme for sensor networks called CODA (COngestion Detection and Avoidance) that comprises three mechanisms: (i) receiver-based congestion detection; (ii) open-loop hop-by-hop backpressure; and (iii) closed-loop multi-source regulation. We present the detailed design, implementation, and evaluation of CODA using simulation and experimentation. We define two important performance metrics (i.e., energy tax and fidelity penalty) to evaluate the impact of CODA on the performance of sensing applications. We discuss the performance benefits and practical engineering challenges of implementing CODA in an experimental sensor network testbed based on Berkeley motes using CSMA. Simulation results indicate that CODA significantly improves the performance of data dissemination applications such as directed diffusion by mitigating hotspots, and reducing the energy tax with low fidelity penalty on sensing applications. We also demonstrate that CODA is capable of responding to a number of congestion scenarios that we believe will be prevalent as the deployment of these networks accelerates.