Results 1 - 10
of
358
The impact of imperfect scheduling on cross-layer congestion control in wireless networks
, 2005
"... In this paper, we study cross-layer design for congestion control in multihop wireless networks. In previous work, we have developed an optimal cross-layer congestion control scheme that jointly computes both the rate allocation and the stabilizing schedule that controls the resources at the under ..."
Abstract
-
Cited by 349 (32 self)
- Add to MetaCart
In this paper, we study cross-layer design for congestion control in multihop wireless networks. In previous work, we have developed an optimal cross-layer congestion control scheme that jointly computes both the rate allocation and the stabilizing schedule that controls the resources at the underlying layers. However, the scheduling component in this optimal crosslayer congestion control scheme has to solve a complex global optimization problem at each time, and is hence too computationally expensive for online implementation. In this paper, we study how the performance of cross-layer congestion control will be impacted if the network can only use an imperfect (and potentially distributed) scheduling component that is easier to implement. We study both the case when the number of users in the system is fixed and the case with dynamic arrivals and departures of the users, and we establish performance bounds of cross-layer congestion control with imperfect scheduling. Compared with a layered approach that does not design congestion control and scheduling together, our cross-layer approach has provably better performance bounds, and substantially outperforms the layered approach. The insights drawn from our analyses also enable us to design a fully distributed cross-layer congestion control and scheduling algorithm for a restrictive interference model.
Fairness and optimal stochastic control for heterogeneous networks
- Proc. IEEE INFOCOM, March 2005. TRANSACTIONS ON NETWORKING, VOL
, 2008
"... Abstract — We consider optimal control for general networks with both wireless and wireline components and time varying channels. A dynamic strategy is developed to support all traffic whenever possible, and to make optimally fair decisions about which data to serve when inputs exceed network capaci ..."
Abstract
-
Cited by 266 (63 self)
- Add to MetaCart
(Show Context)
Abstract — We consider optimal control for general networks with both wireless and wireline components and time varying channels. A dynamic strategy is developed to support all traffic whenever possible, and to make optimally fair decisions about which data to serve when inputs exceed network capacity. The strategy is decoupled into separate algorithms for flow control, routing, and resource allocation, and allows each user to make decisions independent of the actions of others. The combined strategy is shown to yield data rates that are arbitrarily close to the optimal operating point achieved when all network controllers are coordinated and have perfect knowledge of future events. The cost of approaching this fair operating point is an end-to-end delay increase for data that is served by the network.
A tutorial on cross-layer optimization in wireless networks
- IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
, 2006
"... This tutorial paper overviews recent developments in optimization based approaches for resource allocation problems in wireless systems. We begin by overviewing important results in the area of opportunistic (channel-aware) scheduling for cellular (single-hop) networks, where easily implementable my ..."
Abstract
-
Cited by 248 (29 self)
- Add to MetaCart
(Show Context)
This tutorial paper overviews recent developments in optimization based approaches for resource allocation problems in wireless systems. We begin by overviewing important results in the area of opportunistic (channel-aware) scheduling for cellular (single-hop) networks, where easily implementable myopic policies are shown to optimize system performance. We then describe key lessons learned and the main obstacles in extending the work to general resource allocation problems for multi-hop wireless networks. Towards this end, we show that a clean-slate optimization based approach to the multi-hop resource allocation problem naturally results in a “loosely coupled” crosslayer solution. That is, the algorithms obtained map to different layers (transport, network, and MAC/PHY) of the protocol stack are coupled through a limited amount of information being passed back and forth. It turns out that the optimal scheduling component at the MAC layer is very complex and thus needs simpler (potentially imperfect) distributed solutions. We demonstrate how to use imperfect scheduling in the crosslayer framework and describe recently developed distributed algorithms along these lines. We conclude by describing a set of open research problems.
Fair Resource Allocation in Wireless Networks using Queue-length-based Scheduling and Congestion Control
"... We consider the problem of allocating resources (time slots, frequency, power, etc.) at a base station to many competing flows, where each flow is intended for a different re-ceiver. The channel conditions may be time-varying and different for different receivers. It is well-known that appropriate ..."
Abstract
-
Cited by 202 (45 self)
- Add to MetaCart
We consider the problem of allocating resources (time slots, frequency, power, etc.) at a base station to many competing flows, where each flow is intended for a different re-ceiver. The channel conditions may be time-varying and different for different receivers. It is well-known that appropriately chosen queue-length based policies are throughput-optimal while other policies based on the estimation of channel statistics can be used to allocate resources fairly (such as proportional fairness) among competing users. In this paper, we show that a combination of queue-length-based scheduling at the base station and congestion control implemented either at the base station or at the end users can lead to fair resource allocation and queue-length stability.
Capacity and delay tradeoffs for ad-hoc mobile networks
- IEEE TRANSACTIONS ON INFORMATION THEORY
, 2005
"... We consider the throughput/delay tradeoffs for scheduling data transmissions in a mobile ad-hoc network. To reduce delays in the network, each user sends redundant packets along multiple paths to the destination. Assuming the network has a cell partitioned structure and users move according to a s ..."
Abstract
-
Cited by 190 (12 self)
- Add to MetaCart
We consider the throughput/delay tradeoffs for scheduling data transmissions in a mobile ad-hoc network. To reduce delays in the network, each user sends redundant packets along multiple paths to the destination. Assuming the network has a cell partitioned structure and users move according to a simplified independent and identically distributed (i.i.d.) mobility model, we compute the exact network capacity and the exact endto-end queueing delay when no redundancy is used. The capacity achieving algorithm is a modified version of the Grossglauser-Tse 2-hop relay algorithm and provides O(N) delay (where N is the number of users). We then show that redundancy cannot increase capacity, but can significantly improve delay. The following necessary tradeoff is established: delay/rate ≥ O(N). Two protocols that use redundancy and operate near the boundary of this curve are developed, with delays of O(√ N) and O(log(N)), respectively. Networks with non-i.i.d. mobility are also considered and shown through simulation to closely match the performance of i.i.d. systems in the O(√ N) delay regime.
Energy optimal control for time varying wireless networks
- IEEE Trans. Inform. Theory
, 2006
"... Abstract — We develop a dynamic control strategy for minimizing energy expenditure in a time varying wireless network with adaptive transmission rates. The algorithm operates without knowledge of traffic rates or channel statistics, and yields average power that is arbitrarily close to the minimum p ..."
Abstract
-
Cited by 184 (50 self)
- Add to MetaCart
(Show Context)
Abstract — We develop a dynamic control strategy for minimizing energy expenditure in a time varying wireless network with adaptive transmission rates. The algorithm operates without knowledge of traffic rates or channel statistics, and yields average power that is arbitrarily close to the minimum possible value achieved by an algorithm optimized with complete knowledge of future events. Proximity to this optimal solution is shown to be inversely proportional to network delay. We then present a similar algorithm that solves the related problem of maximizing network throughput subject to peak and average power constraints. The techniques used in this paper are novel and establish a foundation for stochastic network optimization.
Joint rate control and scheduling in multihop wireless networks
- IN PROCEEDINGS OF IEEE CONFERENCE ON DECISION AND CONTROL
, 2004
"... We study the joint problem of allocating data rates and finding a stabilizing scheduling policy in a multihop wireless network. We propose a dual optimization based approach through which the rate control problem and the scheduling problem can be decomposed. We demonstrate via both analytical and n ..."
Abstract
-
Cited by 159 (13 self)
- Add to MetaCart
(Show Context)
We study the joint problem of allocating data rates and finding a stabilizing scheduling policy in a multihop wireless network. We propose a dual optimization based approach through which the rate control problem and the scheduling problem can be decomposed. We demonstrate via both analytical and numerical results that the proposed mechanism can fully utilize the capacity of the network, maintain fairness, and improve the quality of service to the users.
Cross-layer congestion control, routing and scheduling design in ad hoc wireless networks
- PROC. IEEE INFOCOM
, 2006
"... This paper considers jointly optimal design of crosslayer congestion control, routing and scheduling for ad hoc wireless networks. We first formulate the rate constraint and scheduling constraint using multicommodity flow variables, and formulate resource allocation in networks with fixed wireless ..."
Abstract
-
Cited by 151 (10 self)
- Add to MetaCart
(Show Context)
This paper considers jointly optimal design of crosslayer congestion control, routing and scheduling for ad hoc wireless networks. We first formulate the rate constraint and scheduling constraint using multicommodity flow variables, and formulate resource allocation in networks with fixed wireless channels (or single-rate wireless devices that can mask channel variations) as a utility maximization problem with these constraints. By dual decomposition, the resource allocation problem naturally decomposes into three subproblems: congestion control, routing and scheduling that interact through congestion price. The global convergence property of this algorithm is proved. We next extend the dual algorithm to handle networks with timevarying channels and adaptive multi-rate devices. The stability of the resulting system is established, and its performance is characterized with respect to an ideal reference system which has the best feasible rate region at link layer. We then generalize the aforementioned results to a general model of queueing network served by a set of interdependent parallel servers with time-varying service capabilities, which models many design problems in communication networks. We show that for a general convex optimization problem where a subset of variables lie in a polytope and the rest in a convex set, the dual-based algorithm remains stable and optimal when the constraint set is modulated by an irreducible finite-state Markov chain. This paper thus presents a step toward a systematic way to carry out cross-layer design in the framework of “layering as optimization decomposition ” for time-varying channel models.
Maximizing Throughput in Wireless Networks via Gossiping
, 2006
"... A major challenge in the design of wireless networks is the need for distributed scheduling algorithms that will efficiently share the common spectrum. Recently, a few distributed algorithms for networks in which a node can converse with at most a single neighbor at a time have been presented. These ..."
Abstract
-
Cited by 146 (30 self)
- Add to MetaCart
A major challenge in the design of wireless networks is the need for distributed scheduling algorithms that will efficiently share the common spectrum. Recently, a few distributed algorithms for networks in which a node can converse with at most a single neighbor at a time have been presented. These algorithms guarantee 50 % of the maximum possible throughput. We present the first distributed scheduling framework that guarantees maximum throughput. It is based on a combination of a distributed matching algorithm and an algorithm that compares and merges successive matching solutions. The comparison can be done by a deterministic algorithm or by randomized gossip algorithms. In the latter case, the comparison may be inaccurate. Yet, we show that if the matching and gossip algorithms satisfy simple conditions related to their performance and to the inaccuracy of the comparison (respectively), the framework attains the desired throughput. It is shown that the complexities of our algorithms, that achieve nearly 100 % throughput, are comparable to those of the algorithms that achieve 50 % throughput. Finally, we discuss extensions to general interference models. Even for such models, the framework provides a simple distributed throughput optimal algorithm.
On the Complexity of Scheduling in Wireless Networks
- MOBICOM '06
, 2006
"... We consider the problem of throughput-optimal scheduling in wireless networks subject to interference constraints. We model the interference using a family of K-hop interference models. We define a K-hop interference model as one for which no two links within K hops can successfully transmit at the ..."
Abstract
-
Cited by 129 (3 self)
- Add to MetaCart
We consider the problem of throughput-optimal scheduling in wireless networks subject to interference constraints. We model the interference using a family of K-hop interference models. We define a K-hop interference model as one for which no two links within K hops can successfully transmit at the same time (Note that IEEE 802.11 DCF corresponds to a 2-hop interference model.). For a given K, a throughput-optimal scheduler needs to solve a maximum weighted matching problem subject to the K-hop interference constraints. For K = 1, the resulting problem is the classical Maximum Weighted Matching problem, that can be solved in polynomial time. However, we show that for K> 1, the resulting problems are NP-Hard and cannot be approximated within a factor that grows polynomially with the number of nodes. Interestingly, we show that for specific kinds of graphs, that can be used to model the underlying connectivity graph of a wide range of wireless networks, the resulting problems admit polynomial time approximation schemes. We also show that a simple greedy matching algorithm provides a constant factor approximation to the scheduling problem for all K in this case. We then show that under a setting with single-hop traffic and no rate control, the maximal scheduling policy considered in recent related works can achieve a constant fraction of the capacity region for networks whose connectivity graph can be represented using one of the above classes of graphs. These results are encouraging as they suggest that one can develop distributed algorithms to achieve near optimal throughput in case of a wide range of wireless networks.