Results 1 -
1 of
1
PREPARATION, CHARACTERIZATION AND APPLICATION OF SONOCHEMICALLY DOPED Fe3+ INTO ZnO NANOPARTICLES
"... In this present study, mechanistic investigation of ultrasound–assisted dye decolorization/degradation was investigated using sonochemically prepared Fe3+ doped ZnO. Fe3+ doped ZnO nanoparticle was prepared under ultrasound (20 kHz) irradiation using a doping concentration of 2 wt % of Fe(III). To i ..."
Abstract
- Add to MetaCart
(Show Context)
In this present study, mechanistic investigation of ultrasound–assisted dye decolorization/degradation was investigated using sonochemically prepared Fe3+ doped ZnO. Fe3+ doped ZnO nanoparticle was prepared under ultrasound (20 kHz) irradiation using a doping concentration of 2 wt % of Fe(III). To investigate the catalytic activity of Fe3+ doped ZnO, Acid Red 14 (azo dye) was chosen for decolorization/degradation using sonolysis, photocatalysis and sono–photocatalysis processes. To study the influence of dopant onto structure, crystallinity, and optical properties, different analytical analyses were performed such as X–ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Zeta potential, Delsa Nano Particle Size Analyzer (PSA), Vibrating Sample Magnetometer analysis (VSM) and Field Emission Scanning Electron Microscopy (FE–SEM) etc. For photocatalytic experiments, a blended high pressure mercury UV lamp with maximum peak emission at 365 nm was used. The decolorization/degradation of dye with modified photocatalyst showed faster reaction kinetics under sono–photocatalytic process. Ultrasound showed an additive effect for degradation/decolorization process. The maximum decolorization of AR14 was achieved ( ~ 82%) under sono–photocatlytic process with an initial dye concentration of 20 ppm. The sono–photocatalysis process showed 1.4 – 1.6 higher reaction rates with Fe– doped ZnO than pure ZnO.