Results 1 - 10
of
679
Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
- IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
, 2005
"... This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes vario ..."
Abstract
-
Cited by 1490 (23 self)
- Add to MetaCart
(Show Context)
This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes various limitations of current recommendation methods and discusses possible extensions that can improve recommendation capabilities and make recommender systems applicable to an even broader range of applications. These extensions include, among others, an improvement of understanding of users and items, incorporation of the contextual information into the recommendation process, support for multcriteria ratings, and a provision of more flexible and less intrusive types of recommendations.
Selection of relevant features and examples in machine learning
- ARTIFICIAL INTELLIGENCE
, 1997
"... In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been mad ..."
Abstract
-
Cited by 606 (2 self)
- Add to MetaCart
(Show Context)
In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been made on these topics in both empirical and theoretical work in machine learning, and we present a general framework that we use to compare different methods. We close with some challenges for future work in this area.
Toward Optimal Active Learning through Sampling Estimation of Error Reduction
- In Proc. 18th International Conf. on Machine Learning
, 2001
"... This paper presents an active learning method that directly optimizes expected future error. This is in contrast to many other popular techniques that instead aim to reduce version space size. These other methods are popular because for many learning models, closed form calculation of the expec ..."
Abstract
-
Cited by 353 (2 self)
- Add to MetaCart
(Show Context)
This paper presents an active learning method that directly optimizes expected future error. This is in contrast to many other popular techniques that instead aim to reduce version space size. These other methods are popular because for many learning models, closed form calculation of the expected future error is intractable. Our approach is made feasible by taking a sampling approach to estimating the expected reduction in error due to the labeling of a query. In experimental results on two real-world data sets we reach high accuracy very quickly, sometimes with four times fewer labeled examples than competing methods. 1.
Active learning literature survey
, 2010
"... The key idea behind active learning is that a machine learning algorithm can achieve greater accuracy with fewer labeled training instances if it is allowed to choose the data from which is learns. An active learner may ask queries in the form of unlabeled instances to be labeled by an oracle (e.g., ..."
Abstract
-
Cited by 326 (1 self)
- Add to MetaCart
(Show Context)
The key idea behind active learning is that a machine learning algorithm can achieve greater accuracy with fewer labeled training instances if it is allowed to choose the data from which is learns. An active learner may ask queries in the form of unlabeled instances to be labeled by an oracle (e.g., a human annotator). Active learning is well-motivated in many modern machine learning problems, where unlabeled data may be abundant but labels are difficult, time-consuming, or expensive to obtain. This report provides a general introduction to active learning and a survey of the literature. This includes a discussion of the scenarios in which queries can be formulated, and an overview of the query strategy frameworks proposed in the literature to date. An analysis of the empirical and theoretical evidence for active learning, a summary of several problem setting variants, and a discussion
Employing EM in Pool-Based Active Learning for Text Classification
, 1998
"... This paper shows how a text classifier's need for labeled training data can be reduced by a combination of active learning and Expectation Maximization (EM) on a pool of unlabeled data. Query-by-Committee is used to actively select documents for labeling, then EM with a naive Bayes model furthe ..."
Abstract
-
Cited by 320 (10 self)
- Add to MetaCart
This paper shows how a text classifier's need for labeled training data can be reduced by a combination of active learning and Expectation Maximization (EM) on a pool of unlabeled data. Query-by-Committee is used to actively select documents for labeling, then EM with a naive Bayes model further improves classification accuracy by concurrently estimating probabilistic labels for the remaining unlabeled documents and using them to improve the model. We also present a metric for better measuring disagreement among committee members; it accounts for the strength of their disagreement and for the distribution of the documents. Experimental results show that our method of combining EM and active learning requires only half as many labeled training examples to achieve the same accuracy as either EM or active learning alone. Keywords: text classification active learning unsupervised learning information retrieval 1 Introduction In many settings for learning text classifiers, obtaining lab...
Less is more: Active learning with support vector machines
, 2000
"... We describe a simple active learning heuristic which greatly enhances the generalization behavior of support vector machines (SVMs) on several practical document classification tasks. We observe a number of benefits, the most surprising of which is that a SVM trained on a wellchosen subset of the av ..."
Abstract
-
Cited by 278 (1 self)
- Add to MetaCart
We describe a simple active learning heuristic which greatly enhances the generalization behavior of support vector machines (SVMs) on several practical document classification tasks. We observe a number of benefits, the most surprising of which is that a SVM trained on a wellchosen subset of the available corpus frequently performs better than one trained on all available data. The heuristic for choosing this subset is simple to compute, and makes no use of information about the test set. Given that the training time of SVMs depends heavily on the training set size, our heuristic not only offers better performance with fewer data, it frequently does so in less time than the naive approach of training on all available data. 1.
Analyzing the Effectiveness and Applicability of Co-training
, 2000
"... Recently there has been significant interest in supervised learning algorithms that combine labeled and unlabeled data for text learning tasks. The co-training setting [1] applies to datasets that have a natural separation of their features into two disjoint sets. We demonstrate that when learning f ..."
Abstract
-
Cited by 263 (7 self)
- Add to MetaCart
(Show Context)
Recently there has been significant interest in supervised learning algorithms that combine labeled and unlabeled data for text learning tasks. The co-training setting [1] applies to datasets that have a natural separation of their features into two disjoint sets. We demonstrate that when learning from labeled and unlabeled data, algorithms explicitly leveraging a natural independent split of the features outperform algorithms that do not. When a natural split does not exist, co-training algorithms that manufacture a feature split may out-perform algorithms not using a split. These results help explain why co-training algorithms are both discriminative in nature and robust to the assumptions of their embedded classifiers. Categories and Subject Descriptors I.2.6 [Artificial Intelligence]: Learning; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval--- Information Filtering Keywords co-training, expectation-maximization, learning with labeled and unlabeled...
Intrinsic motivation systems for autonomous mental development
- IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
, 2007
"... Exploratory activities seem to be intrinsically rewarding for children and crucial for their cognitive development. Can a machine be endowed with such an intrinsic motivation system? This is the question we study in this paper, presenting a number of computational systems that try to capture this dr ..."
Abstract
-
Cited by 255 (56 self)
- Add to MetaCart
(Show Context)
Exploratory activities seem to be intrinsically rewarding for children and crucial for their cognitive development. Can a machine be endowed with such an intrinsic motivation system? This is the question we study in this paper, presenting a number of computational systems that try to capture this drive towards novel or curious situations. After discussing related research coming from developmental psychology, neuroscience, developmental robotics, and active learning, this paper presents the mechanism of Intelligent Adaptive Curiosity, an intrinsic motivation system which pushes a robot towards situations in which it maximizes its learning progress. This drive makes the robot focus on situations which are neither too predictable nor too unpredictable, thus permitting autonomous mental development. The complexity of the robot’s activities autonomously increases and complex developmental sequences self-organize without
On Learning, Representing and Generalizing a Task in a Humanoid Robot
- IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, PART B. SPECIAL
, 2007
"... We present a programming-by-demonstration framework for generically extracting the relevant features of a given task and for addressing the problem of generalizing the acquired knowledge to different contexts. We validate the archi-tecture through a series of experiments, in which a human demon-stra ..."
Abstract
-
Cited by 239 (48 self)
- Add to MetaCart
(Show Context)
We present a programming-by-demonstration framework for generically extracting the relevant features of a given task and for addressing the problem of generalizing the acquired knowledge to different contexts. We validate the archi-tecture through a series of experiments, in which a human demon-strator teaches a humanoid robot simple manipulatory tasks. A probability-based estimation of the relevance is suggested by first projecting the motion data onto a generic latent space using principal component analysis. The resulting signals are encoded using a mixture of Gaussian/Bernoulli distributions (Gaussian mixture model/Bernoulli mixture model). This provides a measure of the spatio-temporal correlations across the different modalities collected from the robot, which can be used to determine a metric of the imitation performance. The trajectories are then generalized using Gaussian mixture regression. Finally, we analytically compute the trajectory which optimizes the imitation metric and use this to generalize the skill to different contexts.
Learning with Labeled and Unlabeled Data
, 2001
"... In this paper, on the one hand, we aim to give a review on literature dealing with the problem of supervised learning aided by additional unlabeled data. On the other hand, being a part of the author's first year PhD report, the paper serves as a frame to bundle related work by the author as we ..."
Abstract
-
Cited by 202 (3 self)
- Add to MetaCart
(Show Context)
In this paper, on the one hand, we aim to give a review on literature dealing with the problem of supervised learning aided by additional unlabeled data. On the other hand, being a part of the author's first year PhD report, the paper serves as a frame to bundle related work by the author as well as numerous suggestions for potential future work. Therefore, this work contains more speculative and partly subjective material than the reader might expect from a literature review. We give a rigorous definition of the problem and relate it to supervised and unsupervised learning. The crucial role of prior knowledge is put forward, and we discuss the important notion of input-dependent regularization. We postulate a number of baseline methods, being algorithms or algorithmic schemes which can more or less straightforwardly be applied to the problem, without the need for genuinely new concepts. However, some of them might serve as basis for a genuine method. In the literature revi...