Results 1 -
2 of
2
Anomaly detection in dynamic networks: a survey
- Wiley Interdisciplinary Reviews: Computational Statistics
, 2015
"... Anomaly detection is an important problem with multiple applications, and thus has been studied for decades in various research domains. In the past decade there has been a growing interest in anomaly detection in data represented as networks, or graphs, largely because of their robust expressivene ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
Anomaly detection is an important problem with multiple applications, and thus has been studied for decades in various research domains. In the past decade there has been a growing interest in anomaly detection in data represented as networks, or graphs, largely because of their robust expressiveness and their natural ability to represent complex relationships. Originally, techniques focused on anomaly detection in static graphs, which do not change and are capable of representing only a single snapshot of data. As real-world networks are constantly changing, there has been a shift in focus to dynamic graphs, which evolve over time. In this survey, we aim to provide a comprehensive overview of anomaly detection in dynamic networks, concentrating on the state-of-the-art methods. We first describe four types of anomalies that arise in dynamic networks, providing an intuitive explanation, applications, and a concrete example for each. Having established an idea for what constitutes an anomaly, a general two-stage approach to anomaly detection in dynamic networks that is common among the methods is presented. We then construct a two-tiered taxonomy, first partitioning the methods based on the intuition behind their approach, and subsequently subdividing them based on the types of anomalies they detect. Within each of the tier one categories-community, compression, decomposition, distance, and probabilistic model based-we highlight the major similarities and differences, showing the wealth of techniques derived from similar conceptual approaches. © 2015 The Authors. financial systems connecting banks across the world, electric power grids connecting geographically distributed areas, and social networks that connect users, businesses, or customers using relationships such as friendship, collaboration, or transactional interactions. These are examples of dynamic networks, which, unlike static networks, are constantly undergoing changes to their structure or attributes. Possible changes include insertion and deletion of vertices (objects), insertion and deletion of edges (relationships), and modification of attributes (e.g., vertex or edge labels). WIREs Computational Statistics An important problem over dynamic networks is anomaly detection-finding objects, relationships, or
Coordinating Truck Platooning by Clustering Pairwise Fuel-Optimal Plans
"... Abstract—We consider the fuel-optimal coordination of trucks into platoons. Truck platooning is a promising technology that enables trucks to save significant amounts of fuel by driving close together and thus reducing air drag. We study how fuel-optimal speed profiles for platooning can be computed ..."
Abstract
- Add to MetaCart
(Show Context)
Abstract—We consider the fuel-optimal coordination of trucks into platoons. Truck platooning is a promising technology that enables trucks to save significant amounts of fuel by driving close together and thus reducing air drag. We study how fuel-optimal speed profiles for platooning can be computed. A first-order fuel model is considered and pairwise optimal plans are derived. We formulate an optimization problem that combines these pairwise plans into an overall plan for a large number of trucks. The problem resembles a medoids clustering problem. We propose an approximation algorithm similar to the partitioning around medoids algorithm and discuss its convergence. The method is evaluated with Monte Carlo simulations. We demonstrate that the proposed algorithm can compute a plan for thousands of trucks and that significant fuel savings can be achieved. I.