Results 1  10
of
112
Towards a Mathematical Operational Semantics
 In Proc. 12 th LICS Conf
, 1997
"... We present a categorical theory of `wellbehaved' operational semantics which aims at complementing the established theory of domains and denotational semantics to form a coherent whole. It is shown that, if the operational rules of a programming language can be modelled as a natural transforma ..."
Abstract

Cited by 173 (8 self)
 Add to MetaCart
(Show Context)
We present a categorical theory of `wellbehaved' operational semantics which aims at complementing the established theory of domains and denotational semantics to form a coherent whole. It is shown that, if the operational rules of a programming language can be modelled as a natural transformation of a suitable general form, depending on functorial notions of syntax and behaviour, then one gets both an operational model and a canonical, internally fully abstract denotational model for free; moreover, both models satisfy the operational rules. The theory is based on distributive laws and bialgebras; it specialises to the known classes of wellbehaved rules for structural operational semantics, such as GSOS.
The ProofTheory and Semantics of Intuitionistic Modal Logic
, 1994
"... Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpret ..."
Abstract

Cited by 129 (0 self)
 Add to MetaCart
(Show Context)
Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpreted in an intuitionistic metatheory then the induced modal logics no longer satisfy certain intuitionistically invalid principles. This thesis investigates the intuitionistic modal logics that arise in this way. Natural deduction systems for various intuitionistic modal logics are presented. From one point of view, these systems are selfjustifying in that a possible world interpretation of the modalities can be read off directly from the inference rules. A technical justification is given by the faithfulness of translations into intuitionistic firstorder logic. It is also established that, in many cases, the natural deduction systems induce wellknown intuitionistic modal logics, previously given by Hilbertstyle axiomatizations. The main benefit of the natural deduction systems over axiomatizations is their
On the Observable Properties of Higher Order Functions that Dynamically Create Local Names
 IN MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, PROC. 18TH INT. SYMP
, 1993
"... The research reported in this paper is concerned with the problem of reasoning about properties of higher order functions involving state. It is motivated by the desire to identify what, if any, are the difficulties created purely by locality of state, independent of other properties such as sideef ..."
Abstract

Cited by 126 (14 self)
 Add to MetaCart
The research reported in this paper is concerned with the problem of reasoning about properties of higher order functions involving state. It is motivated by the desire to identify what, if any, are the difficulties created purely by locality of state, independent of other properties such as sideeffects, exceptional termination and nontermination due to recursion. We consider a simple language (equivalent to a fragment of Standard ML) of typed, higher order functions that can dynamically create fresh names. Names are created with local scope, can be tested for equality and can be passed around via function application, but that is all. we demonstrate
Type Classes and Overloading in HigherOrder Logic
 Theorem Proving in Higher Order Logics: TPHOLs ’97, LNCS 1275
, 1997
"... Type classes and overloading are shown to be independent concepts that can both be added to simple higherorder logics in the tradition of Church and Gordon, without demanding more logical expressiveness. In particular, modeltheoretic issues are not affected. Our metalogical results may serve as a ..."
Abstract

Cited by 74 (7 self)
 Add to MetaCart
Type classes and overloading are shown to be independent concepts that can both be added to simple higherorder logics in the tradition of Church and Gordon, without demanding more logical expressiveness. In particular, modeltheoretic issues are not affected. Our metalogical results may serve as a foundation of systems like Isabelle/Pure that offer the user Haskellstyle ordersorted polymorphism as an extended syntactic feature. The latter can be used to describe simple abstract theories with a single carrier type and a fixed signature of operations.
Monads and Effects
 IN INTERNATIONAL SUMMER SCHOOL ON APPLIED SEMANTICS APPSEM’2000
, 2000
"... A tension in language design has been between simple semantics on the one hand, and rich possibilities for sideeffects, exception handling and so on on the other. The introduction of monads has made a large step towards reconciling these alternatives. First proposed by Moggi as a way of structu ..."
Abstract

Cited by 73 (7 self)
 Add to MetaCart
A tension in language design has been between simple semantics on the one hand, and rich possibilities for sideeffects, exception handling and so on on the other. The introduction of monads has made a large step towards reconciling these alternatives. First proposed by Moggi as a way of structuring semantic descriptions, they were adopted by Wadler to structure Haskell programs, and now offer a general technique for delimiting the scope of effects, thus reconciling referential transparency and imperative operations within one programming language. Monads have been used to solve longstanding problems such as adding pointers and assignment, interlanguage working, and exception handling to Haskell, without compromising its purely functional semantics. The course will introduce monads, effects and related notions, and exemplify their applications in programming (Haskell) and in compilation (MLj). The course will present typed metalanguages for monads and related categorica...
Bi hyperdoctrines, higherorder separation logic, and abstraction
 IN ESOP’05, LNCS
, 2005
"... We present a precise correspondence between separation logic and a simple notion of predicate BI, extending the earlier correspondence given between part of separation logic and propositional BI. Moreover, we introduce the notion of a BI hyperdoctrine and show that it soundly models classical and in ..."
Abstract

Cited by 67 (25 self)
 Add to MetaCart
(Show Context)
We present a precise correspondence between separation logic and a simple notion of predicate BI, extending the earlier correspondence given between part of separation logic and propositional BI. Moreover, we introduce the notion of a BI hyperdoctrine and show that it soundly models classical and intuitionistic first and higherorder predicate BI, and use it to show that we may easily extend separation logic to higherorder. We also demonstrate that this extension is important for program proving, since it provides sound reasoning principles for data abstraction in the presence of
Computational types from a logical perspective
 Journal of Functional Programming
, 1998
"... Moggi’s computational lambda calculus is a metalanguage for denotational semantics which arose from the observation that many different notions of computation have the categorical structure of a strong monad on a cartesian closed category. In this paper we show that the computational lambda calculus ..."
Abstract

Cited by 61 (6 self)
 Add to MetaCart
Moggi’s computational lambda calculus is a metalanguage for denotational semantics which arose from the observation that many different notions of computation have the categorical structure of a strong monad on a cartesian closed category. In this paper we show that the computational lambda calculus also arises naturally as the term calculus corresponding (by the CurryHoward correspondence) to a novel intuitionistic modal propositional logic. We give natural deduction, sequent calculus and Hilbertstyle presentations of this logic and prove strong normalisation and confluence results. 1
On the Interpretation of Type Theory in Locally Cartesian Closed Categories
 Proceedings of Computer Science Logic, Lecture Notes in Computer Science
, 1994
"... . We show how to construct a model of dependent type theory (category with attributes) from a locally cartesian closed category (lccc). This allows to define a semantic function interpreting the syntax of type theory in an lccc. We sketch an application which gives rise to an interpretation of exten ..."
Abstract

Cited by 57 (1 self)
 Add to MetaCart
(Show Context)
. We show how to construct a model of dependent type theory (category with attributes) from a locally cartesian closed category (lccc). This allows to define a semantic function interpreting the syntax of type theory in an lccc. We sketch an application which gives rise to an interpretation of extensional type theory in intensional type theory. 1 Introduction and Motivation Interpreting dependent type theory in locally cartesian closed categories (lcccs) and more generally in (non split) fibrational models like the ones described in [7] is an intricate problem. The reason is that in order to interpret terms associated with substitution like pairing for \Sigma types or application for \Pitypes one needs a semantical equivalent to syntactic substitution. To clarify the issue let us have a look at the "naive" approach described in Seely's seminal paper [14] which contains a subtle inaccuracy. Assume some dependently typed calculus like the one defined in [10] and an lccc C (a category ...
Syntax and Semantics of Dependent Types
 Semantics and Logics of Computation
, 1997
"... ion is written as [x: oe]M instead of x: oe:M and application is written M(N) instead of App [x:oe] (M; N ). 1 Iterated abstractions and applications are written [x 1 : oe 1 ; : : : ; x n : oe n ]M and M(N 1 ; : : : ; N n ), respectively. The lacking type information can be inferred. The universe ..."
Abstract

Cited by 57 (4 self)
 Add to MetaCart
(Show Context)
ion is written as [x: oe]M instead of x: oe:M and application is written M(N) instead of App [x:oe] (M; N ). 1 Iterated abstractions and applications are written [x 1 : oe 1 ; : : : ; x n : oe n ]M and M(N 1 ; : : : ; N n ), respectively. The lacking type information can be inferred. The universe is written Set instead of U . The Eloperator is omitted. For example the \Pitype is described by the following constant and equality declarations (understood in every valid context): ` \Pi : (oe: Set; : (oe)Set)Set ` App : (oe: Set; : (oe)Set; m: \Pi(oe; ); n: oe) (m) ` : (oe: Set; : (oe)Set; m: (x: oe) (x))\Pi(oe; ) oe: Set; : (oe)Set; m: (x: oe) (x); n: oe ` App(oe; ; (oe; ; m); n) = m(n) Notice, how terms with free variables are represented as framework abstractions (in the type of ) and how substitution is represented as framework application (in the type of App and in the equation). In this way the burden of dealing correctly with variables, substitution, and binding is s...
Internal Type Theory
 Lecture Notes in Computer Science
, 1996
"... . We introduce categories with families as a new notion of model for a basic framework of dependent types. This notion is close to ordinary syntax and yet has a clean categorical description. We also present categories with families as a generalized algebraic theory. Then we define categories with f ..."
Abstract

Cited by 52 (8 self)
 Add to MetaCart
(Show Context)
. We introduce categories with families as a new notion of model for a basic framework of dependent types. This notion is close to ordinary syntax and yet has a clean categorical description. We also present categories with families as a generalized algebraic theory. Then we define categories with families formally in MartinLof's intensional intuitionistic type theory. Finally, we discuss the coherence problem for these internal categories with families. 1 Introduction In a previous paper [8] I introduced a general notion of simultaneous inductiverecursive definition in intuitionistic type theory. This notion subsumes various reflection principles and seems to pave the way for a natural development of what could be called "internal type theory", that is, the construction of models of (fragments of) type theory in type theory, and more generally, the formalization of the metatheory of type theory in type theory. The present paper is a first investigation of such an internal type theor...