Results 1  10
of
82
QAPLIB–A Quadratic Assignment Problem Library
 European Journal of Operational Research
, 1991
"... ..."
Solving LargeScale Sparse Semidefinite Programs for Combinatorial Optimization
 SIAM JOURNAL ON OPTIMIZATION
, 1998
"... We present a dualscaling interiorpoint algorithm and show how it exploits the structure and sparsity of some large scale problems. We solve the positive semidefinite relaxation of combinatorial and quadratic optimization problems subject to boolean constraints. We report the first computational re ..."
Abstract

Cited by 119 (11 self)
 Add to MetaCart
(Show Context)
We present a dualscaling interiorpoint algorithm and show how it exploits the structure and sparsity of some large scale problems. We solve the positive semidefinite relaxation of combinatorial and quadratic optimization problems subject to boolean constraints. We report the first computational results of interiorpoint algorithms for approximating the maximum cut semidefinite programs with dimension upto 3000.
Semidefinite Programming and Combinatorial Optimization
 DOC. MATH. J. DMV
, 1998
"... We describe a few applications of semide nite programming in combinatorial optimization. ..."
Abstract

Cited by 106 (1 self)
 Add to MetaCart
(Show Context)
We describe a few applications of semide nite programming in combinatorial optimization.
Handbook of semidefinite programming
"... Semidefinite programming (or SDP) has been one of the most exciting and active research areas in optimization during the 1990s. It has attracted researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, con ..."
Abstract

Cited by 89 (3 self)
 Add to MetaCart
Semidefinite programming (or SDP) has been one of the most exciting and active research areas in optimization during the 1990s. It has attracted researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, control theory, and statistics. This tremendous research activity was spurred by the discovery of important applications in combinatorial optimization and control theory, the development of efficient interiorpoint algorithms for solving SDP problems, and the depth and elegance of the underlying optimization theory. This book includes nineteen chapters on the theory, algorithms, and applications of semidefinite programming. Written by the leading experts on the subject, it offers an advanced and broad overview of the current state of the field. The coverage is somewhat less comprehensive, and the overall level more advanced, than we had planned at the start of the project. In order to finish the book in a timely fashion, we have had to abandon hopes for separate chapters on some important topics (such as a discussion of SDP algorithms in the
Solving Large Quadratic Assignment Problems on Computational Grids
, 2000
"... The quadratic assignment problem (QAP) is among the hardest combinatorial optimization problems. Some instances of size n = 30 have remained unsolved for decades. The solution of these problems requires both improvements in mathematical programming algorithms and the utilization of powerful computat ..."
Abstract

Cited by 82 (7 self)
 Add to MetaCart
The quadratic assignment problem (QAP) is among the hardest combinatorial optimization problems. Some instances of size n = 30 have remained unsolved for decades. The solution of these problems requires both improvements in mathematical programming algorithms and the utilization of powerful computational platforms. In this article we describe a novel approach to solve QAPs using a stateoftheart branchandbound algorithm running on a federation of geographically distributed resources known as a computational grid. Solution of QAPs of unprecedented complexity, including the nug30, kra30b, and tho30 instances, is reported.
Exploiting Sparsity in PrimalDual InteriorPoint Methods for Semidefinite Programming
 Mathematical Programming
, 1997
"... Abstract. The HelmbergRendlVanderbeiWolkowicz/KojimaShindohHara/Monteiro and the NesterovTodd search directions have been used in many primaldual interiorpoint methods for semidefinite programs. This paper proposes an efficient method for computing the two directions when a semidefinite prog ..."
Abstract

Cited by 76 (19 self)
 Add to MetaCart
(Show Context)
Abstract. The HelmbergRendlVanderbeiWolkowicz/KojimaShindohHara/Monteiro and the NesterovTodd search directions have been used in many primaldual interiorpoint methods for semidefinite programs. This paper proposes an efficient method for computing the two directions when a semidefinite program to be solved is large scale and sparse.
Strong duality for semidefinite programming
 SIAM J. Optim
, 1997
"... Abstract. It is well known that the duality theory for linear programming (LP) is powerful and elegant and lies behind algorithms such as simplex and interiorpoint methods. However, the standard Lagrangian for nonlinear programs requires constraint qualifications to avoid duality gaps. Semidefinite ..."
Abstract

Cited by 63 (18 self)
 Add to MetaCart
Abstract. It is well known that the duality theory for linear programming (LP) is powerful and elegant and lies behind algorithms such as simplex and interiorpoint methods. However, the standard Lagrangian for nonlinear programs requires constraint qualifications to avoid duality gaps. Semidefinite linear programming (SDP) is a generalization of LP where the nonnegativity constraints are replaced by a semidefiniteness constraint on the matrix variables. There are many applications, e.g., in systems and control theory and combinatorial optimization. However, the Lagrangian dual for SDP can have a duality gap. We discuss the relationships among various duals and give a unified treatment for strong duality in semidefinite programming. These duals guarantee strong duality, i.e., a zero duality gap and dual attainment. This paper is motivated by the recent paper by Ramana where one of these duals is introduced.
On Lagrangian relaxation of quadratic matrix constraints
 SIAM J. MATRIX ANAL. APPL
, 2000
"... Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equivalent ..."
Abstract

Cited by 53 (18 self)
 Add to MetaCart
(Show Context)
Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equivalent to semidefinite programming relaxations. For several special cases of QQP, e.g., convex programs and trust region subproblems, the Lagrangian relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective. In this paper we consider a certain QQP where the quadratic constraints correspond to the matrix orthogonality condition XXT = I. For this problem we show that the Lagrangian dual based on relaxing the constraints XXT = I and the seemingly redundant constraints XT X = I has a zero duality gap. This result has natural applications to quadratic assignment and graph partitioning problems, as well as the problem of minimizing the weighted sum of the largest eigenvalues of a matrix. We also show that the technique of relaxing quadratic matrix constraints can be used to obtain a strengthened semidefinite relaxation for the maxcut problem.
Local minima and convergence in lowrank semidefinite programming
 Mathematical Programming
, 2003
"... The lowrank semidefinite programming problem (LRSDPr) is a restriction of the semidefinite programming problem (SDP) in which a bound r is imposed on the rank of X, and it is well known that LRSDPr is equivalent to SDP if r is not too small. In this paper, we classify the local minima of LRSDPr and ..."
Abstract

Cited by 48 (2 self)
 Add to MetaCart
(Show Context)
The lowrank semidefinite programming problem (LRSDPr) is a restriction of the semidefinite programming problem (SDP) in which a bound r is imposed on the rank of X, and it is well known that LRSDPr is equivalent to SDP if r is not too small. In this paper, we classify the local minima of LRSDPr and prove the optimal convergence of a slight variant of the successful, yet experimental, algorithm of Burer and Monteiro [6], which handles LRSDPr via the nonconvex change of variables X = RR T. In addition, for particular problem classes, we describe a practical technique for obtaining lower bounds on the optimal solution value during the execution of the algorithm. Computational results are presented on a set of combinatorial optimization relaxations, including some of the largest quadratic assignment SDPs solved to date.
A New Bound for the Quadratic Assignment Problem Based on Convex Quadratic Programming
 MATHEMATICAL PROGRAMMING
, 1999
"... We describe a new convex quadratic programming bound for the quadratic assignment problem (QAP). The construction of the bound uses a semidefinite programming representation of a basic eigenvalue bound for QAP. The new bound dominates the wellknown projected eigenvalue bound, and appears to be comp ..."
Abstract

Cited by 37 (4 self)
 Add to MetaCart
(Show Context)
We describe a new convex quadratic programming bound for the quadratic assignment problem (QAP). The construction of the bound uses a semidefinite programming representation of a basic eigenvalue bound for QAP. The new bound dominates the wellknown projected eigenvalue bound, and appears to be competitive with existing bounds in the tradeoff between bound quality and computational effort.