Results 1 - 10
of
19
Recent advances in solid-state organic lasers
- Polym. Int
, 2012
"... Organic solid-state lasers are reviewed, with a special emphasis on works published during the last decade. Referring originally to dyes in solid-state polymeric matrices, organic lasers also include the rich family of organic semiconductors, paced by the rapid development of organic light emitting ..."
Abstract
-
Cited by 5 (0 self)
- Add to MetaCart
(Show Context)
Organic solid-state lasers are reviewed, with a special emphasis on works published during the last decade. Referring originally to dyes in solid-state polymeric matrices, organic lasers also include the rich family of organic semiconductors, paced by the rapid development of organic light emitting diodes. Organic lasers are broadly tunable coherent sources are potentially compact, convenient and manufactured at low-costs. In this review, we describe the basic photophysics of the materials used as gain media in organic lasers with a specific look at the distinctive feature of dyes and semiconductors. We also outline the laser architectures used in state-of-the-art organic lasers and the performances of these devices with regard to output power, lifetime, and beam quality. A survey of the recent trends in the field is given, highlighting the latest developments in terms of wavelength coverage, wavelength agility, efficiency and compactness, or towards integrated low-cost sources, with a special focus on the great challenges remaining for achieving direct electrical pumping. Finally, we discuss the very recent demonstration of new kinds of organic lasers based on polaritons or surface plasmons, which open new and very promising routes in the field of organic nanophotonics. 1
Compact hybrid TM-pass polarizer for silicon-on-insulator platform
- Appl. Opt
, 2011
"... Hybrid waveguides consisting of a metal plane separated from a high-index medium by a low-index spacer have recently attracted a lot of interest. TM and TE modes are guided in two different layers in these structures and their properties can be controlled in different manners by changing the wave-gu ..."
Abstract
-
Cited by 3 (2 self)
- Add to MetaCart
(Show Context)
Hybrid waveguides consisting of a metal plane separated from a high-index medium by a low-index spacer have recently attracted a lot of interest. TM and TE modes are guided in two different layers in these structures and their properties can be controlled in different manners by changing the wave-guide dimensions and material properties. We examine the effects of different parameters on the char-acteristics of the two modes in such structures. We show that by properly choosing the dimensions, it is possible to cut off the TE mode while the TM mode can still be guided in a well-confined manner. Using this property of the hybrid guide, we propose a TM-pass polarizer. The proposed device is very compact and compatible with the silicon-on-insulator platform. Finite-difference time-domain simulation indi-cates that such a polarizer can provide a high extinction of the TE mode for a reasonable insertion loss
Plasmonic bowtie nanolaser arrays
- Nano Letters
, 2012
"... ABSTRACT: Plasmonic lasers exploit strong electromagnetic field confinement at dimensions well below the diffraction limit. However, lasing from an electromagnetic hot spot supported by discrete, coupled metal nanoparticles (NPs) has not been explicitly demonstrated to date. We present a new design ..."
Abstract
-
Cited by 2 (0 self)
- Add to MetaCart
ABSTRACT: Plasmonic lasers exploit strong electromagnetic field confinement at dimensions well below the diffraction limit. However, lasing from an electromagnetic hot spot supported by discrete, coupled metal nanoparticles (NPs) has not been explicitly demonstrated to date. We present a new design for a room-temperature nanolaser based on three-dimensional (3D) Au bowtie NPs supported by an organic gain material. The extreme field compression, and thus ultrasmall mode volume, within the bowtie gaps produced laser oscillations at the localized plasmon resonance gap mode of the 3D bowties. Transient absorption measurements confirmed ultrafast resonant energy transfer between photoexcited dye molecules and gap plasmons on the picosecond time scale. These plasmonic nanolasers are anticipated to be readily integrated into Si-based photonic devices, all-optical circuits, and nanoscale biosensors.
RECENT ADVANCES IN SOLID-STATE ORGANIC LASERS
, 2011
"... HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte p ..."
Abstract
- Add to MetaCart
(Show Context)
HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
unknown title
, 2012
"... Theoretical study of loss compensation in long-range dielectric loaded surface plasmon polariton waveguides ..."
Abstract
- Add to MetaCart
Theoretical study of loss compensation in long-range dielectric loaded surface plasmon polariton waveguides
unknown title
"... Plasmonic properties and applications of metallic nanostructures by ..."
(Show Context)
Mode control and loss compensation of propagating surface plasmons
"... ABSTRACT Plasmonic devices can be used to construct nanophotonic circuits and are very promising candidates for next-generation information technology. The functions of plasmonic circuits rely on the rigorous control of plasmon modes. Two different methods were proposed to control the propagation o ..."
Abstract
- Add to MetaCart
ABSTRACT Plasmonic devices can be used to construct nanophotonic circuits and are very promising candidates for next-generation information technology. The functions of plasmonic circuits rely on the rigorous control of plasmon modes. Two different methods were proposed to control the propagation of surface plasmons (SPs) supported by Ag nanowires (NWs). The first one is modulating the beat period of the near-field distribution pattern, which can be realized by depositing Al 2 O 3 layer or changing the refractive index of surrounding medium. The beat period increasing by 90 nm per nanometer of Al 2 O 3 coating or by 16 μm per refractive index unit was obtained in experiments. The second one is introducing local structural symmetry breaking to realize mode conversion of SPs. Three typical structures including NW-nanoparticle (NP) structure, branched NW and bent NW were used to investigate the mode conversion. It's revealed that the mode conversion is a scattering induced process. The lossy characteristic of SPs at optical frequencies typically limits the propagation length and hinders the further development of integrated plasmonic circuits. CdSe nanobelt/Al 2 O 3 /Ag film hybrid plasmonic waveguide was proposed to compensate the loss of SPs by using an optical pump-probe technique. Compared to the measured internal gain, the propagation loss was almost fully compensated for the TM mode. These results for mode control and loss compensation of propagating SPs are important for constructing functional nanophotonic circuits.
Graphene-Based Infrared Lens with Tunable Focal Length
, 2016
"... Abstract-In modern information and communication technologies, manipulating focal length has been hot topic. Considering that the conductivity of graphene layer can effectively be tuned by purposely designing the thickness of the dielectric spacer underneath the graphene layer, a graphene-based len ..."
Abstract
- Add to MetaCart
(Show Context)
Abstract-In modern information and communication technologies, manipulating focal length has been hot topic. Considering that the conductivity of graphene layer can effectively be tuned by purposely designing the thickness of the dielectric spacer underneath the graphene layer, a graphene-based lens with tunable focal length is proposed in this paper, and it can be used to collimate waves. The fabrication of the proposed graphene-based lens is purposed, and the performance of the lens is verified with finite-element method. The simulation results demonstrate that the graphene-based lens has excellent tunability andconfinement. At the same time, the lens exhibits low loss in certain rang and large frequency bandwidth.
Near-field focusing of dielectric microspheres: Super-resolution and field-invariant parameter scaling
"... Abstract: Optical near-fields of small dielectric particles are of particular importance and interests for nanoscale optical engineering such as field localization, fabrication, characterization, sensing and imaging. This paper represents a systematic investigation on the focusing characteristics ( ..."
Abstract
- Add to MetaCart
(Show Context)
Abstract: Optical near-fields of small dielectric particles are of particular importance and interests for nanoscale optical engineering such as field localization, fabrication, characterization, sensing and imaging. This paper represents a systematic investigation on the focusing characteristics (focal length, field enhancement, spot size) for a given refractive-index microsphere (n=1.6) with a varying size parameter . Conditions for super-resolution foci were analysised in details. Particularly strong super-resolution foci with spot size falling at least 50% below the diffraction limit were identified and possible new applications were suggested. To understand how the super-resolution conditions could be scaled to other refractive-index particles or background medium, principles of field-invariant parameters scaling (size, wavelength, and refractive index) were revealed and demonstrated with example cases. It offers the new freedom to choose particles and background medium to gain super-resolution at any frequency across the whole electromagnetic spectrum. 2