Results 1  10
of
30,853
High dimensional graphs and variable selection with the Lasso
 ANNALS OF STATISTICS
, 2006
"... The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso is a ..."
Abstract

Cited by 736 (22 self)
 Add to MetaCart
The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
, 2001
"... Variable selection is fundamental to highdimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized ..."
Abstract

Cited by 948 (62 self)
 Add to MetaCart
likelihood approaches are proposed to handle these kinds of problems. The proposed methods select variables and estimate coefficients simultaneously. Hence they enable us to construct confidence intervals for estimated parameters. The proposed approaches are distinguished from others in that the penalty
A View Of The Em Algorithm That Justifies Incremental, Sparse, And Other Variants
 Learning in Graphical Models
, 1998
"... . The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect to the d ..."
Abstract

Cited by 993 (18 self)
 Add to MetaCart
. The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect
Training Products of Experts by Minimizing Contrastive Divergence
, 2002
"... It is possible to combine multiple latentvariable models of the same data by multiplying their probability distributions together and then renormalizing. This way of combining individual “expert ” models makes it hard to generate samples from the combined model but easy to infer the values of the l ..."
Abstract

Cited by 850 (75 self)
 Add to MetaCart
It is possible to combine multiple latentvariable models of the same data by multiplying their probability distributions together and then renormalizing. This way of combining individual “expert ” models makes it hard to generate samples from the combined model but easy to infer the values
PAML: a program package for phylogenetic analysis by maximum likelihood
 COMPUT APPL BIOSCI 13:555–556
, 1997
"... PAML, currently in version 1.2, is a package of programs for phylogenetic analyses of DNA and protein sequences using the method of maximum likelihood (ML). The programs can be used for (i) maximum likelihood estimation of evolutionary parameters such as branch lengths in a phylogenetic tree, the tr ..."
Abstract

Cited by 1459 (17 self)
 Add to MetaCart
, the transition/transversion rate ratio, the shape parameter of the gamma distribution for variable evolutionary rates at sites, and rate parameters for different genes; (ii) likelihood ratio test of hypotheses concerning sequence evolution, such as rate constancy and independence among sites and rate constancy
Probabilistic Principal Component Analysis
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1999
"... Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation of paramet ..."
Abstract

Cited by 709 (5 self)
 Add to MetaCart
of parameters in a latent variable model closely related to factor analysis. We consider the properties of the associated likelihood function, giving an EM algorithm for estimating the principal subspace iteratively, and discuss, with illustrative examples, the advantages conveyed by this probabilistic approach
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
 Biometrika
, 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract

Cited by 1345 (23 self)
 Add to MetaCart
Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model
Multivariate adaptive regression splines
 The Annals of Statistics
, 1991
"... A new method is presented for flexible regression modeling of high dimensional data. The model takes the form of an expansion in product spline basis functions, where the number of basis functions as well as the parameters associated with each one (product degree and knot locations) are automaticall ..."
Abstract

Cited by 700 (2 self)
 Add to MetaCart
A new method is presented for flexible regression modeling of high dimensional data. The model takes the form of an expansion in product spline basis functions, where the number of basis functions as well as the parameters associated with each one (product degree and knot locations
The Dantzig selector: statistical estimation when p is much larger than n
, 2005
"... In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n ≪ ..."
Abstract

Cited by 879 (14 self)
 Add to MetaCart
In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n
Mixtures of Probabilistic Principal Component Analysers
, 1998
"... Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a com ..."
Abstract

Cited by 532 (6 self)
 Add to MetaCart
maximumlikelihood framework, based on a specific form of Gaussian latent variable model. This leads to a welldefined mixture model for probabilistic principal component analysers, whose parameters can be determined using an EM algorithm. We discuss the advantages of this model in the context
Results 1  10
of
30,853