• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 218,618
Next 10 →

Intelligence Without Representation

by Rodney Brooks - Artificial Intelligence , 1991
"... Artificial intelligence research has foundered on the issue of representation. When intelligence is approached in an incremental manner, with strict reliance on interfacing to the real world through perception and action, reliance on representation disappears. In this paper we outline our approach t ..."
Abstract - Cited by 1798 (13 self) - Add to MetaCart
Artificial intelligence research has foundered on the issue of representation. When intelligence is approached in an incremental manner, with strict reliance on interfacing to the real world through perception and action, reliance on representation disappears. In this paper we outline our approach

Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope

by Aude Oliva, Antonio Torralba - International Journal of Computer Vision , 2001
"... In this paper, we propose a computational model of the recognition of real world scenes that bypasses the segmentation and the processing of individual objects or regions. The procedure is based on a very low dimensional representation of the scene, that we term the Spatial Envelope. We propose a se ..."
Abstract - Cited by 1313 (81 self) - Add to MetaCart
In this paper, we propose a computational model of the recognition of real world scenes that bypasses the segmentation and the processing of individual objects or regions. The procedure is based on a very low dimensional representation of the scene, that we term the Spatial Envelope. We propose a

Reconstruction and Representation of 3D Objects with Radial Basis Functions

by J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, T. R. Evans - Computer Graphics (SIGGRAPH ’01 Conf. Proc.), pages 67–76. ACM SIGGRAPH , 2001
"... We use polyharmonic Radial Basis Functions (RBFs) to reconstruct smooth, manifold surfaces from point-cloud data and to repair incomplete meshes. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. Fast methods for fitting and evaluating RBFs al ..."
Abstract - Cited by 505 (1 self) - Add to MetaCart
We use polyharmonic Radial Basis Functions (RBFs) to reconstruct smooth, manifold surfaces from point-cloud data and to repair incomplete meshes. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. Fast methods for fitting and evaluating RBFs

Probabilistic Visual Learning for Object Representation

by Baback Moghaddam, Alex Pentland , 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in high-dimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture-of ..."
Abstract - Cited by 699 (15 self) - Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in high-dimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture

Good News and Bad News: Representation Theorems and Applications

by Paul R. Milgrom - Bell Journal of Economics
"... prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtai ..."
Abstract - Cited by 700 (3 self) - Add to MetaCart
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may

Classification in the KL-ONE knowledge representation system

by James G. Schmolze, Thomas A. Lipkis - COGNITIVE SCIENCE , 1985
"... KL-ONE lets one define and use a class of descriptive terms called Concepts, where each Concept denotes a set of objects A subsumption relation between Concepts is defined which is related to set inclusion by way of a semantics for Concepts. This subsumption relation defines a partial order on Conce ..."
Abstract - Cited by 673 (8 self) - Add to MetaCart
KL-ONE lets one define and use a class of descriptive terms called Concepts, where each Concept denotes a set of objects A subsumption relation between Concepts is defined which is related to set inclusion by way of a semantics for Concepts. This subsumption relation defines a partial order

Dynamic Bayesian Networks: Representation, Inference and Learning

by Kevin Patrick Murphy , 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have bee ..."
Abstract - Cited by 770 (3 self) - Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have

The Contourlet Transform: An Efficient Directional Multiresolution Image Representation

by Minh N. Do, Martin Vetterli - IEEE TRANSACTIONS ON IMAGE PROCESSING
"... The limitations of commonly used separable extensions of one-dimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” two-dimensional transform that can capture the intrinsic geometrical structure t ..."
Abstract - Cited by 513 (20 self) - Add to MetaCart
The limitations of commonly used separable extensions of one-dimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” two-dimensional transform that can capture the intrinsic geometrical structure

Corporate Ownership Around The World

by Rafael La Porta, Florencio Lopez-de-Silanes, Andrei Shleifer , 1998
"... We present data on ownership structures of large corporations in 27 wealthy economies, making an effort to identify the ultimate controlling shareholders of these firms. We find that, except in economies with very good shareholder protection, relatively few of these firms are widely held, in contras ..."
Abstract - Cited by 1163 (30 self) - Add to MetaCart
significantly in excess of their cash flow rights, primarily through the use of pyramids and participation in management.

EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation

by Michael J. Black, Allan D. Jepson - International Journal of Computer Vision , 1998
"... This paper describes an approach for tracking rigid and articulated objects using a view-based representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the least-squares image r ..."
Abstract - Cited by 656 (16 self) - Add to MetaCart
This paper describes an approach for tracking rigid and articulated objects using a view-based representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the least-squares image
Next 10 →
Results 1 - 10 of 218,618
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University