• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 379,544
Next 10 →

Data Mining: Concepts and Techniques

by Jiawei Han, Micheline Kamber , 2000
"... Our capabilities of both generating and collecting data have been increasing rapidly in the last several decades. Contributing factors include the widespread use of bar codes for most commercial products, the computerization of many business, scientific and government transactions and managements, a ..."
Abstract - Cited by 3142 (23 self) - Add to MetaCart
of data and information. This explosive growth in stored data has generated an urgent need for new techniques and automated tools that can intelligently assist us in transforming the vast amounts of data into useful information and knowledge. This book explores the concepts and techniques of data mining

A comparison of document clustering techniques

by Michael Steinbach, George Karypis, Vipin Kumar - In KDD Workshop on Text Mining , 2000
"... This paper presents the results of an experimental study of some common document clustering techniques: agglomerative hierarchical clustering and K-means. (We used both a “standard” K-means algorithm and a “bisecting ” K-means algorithm.) Our results indicate that the bisecting K-means technique is ..."
Abstract - Cited by 613 (27 self) - Add to MetaCart
This paper presents the results of an experimental study of some common document clustering techniques: agglomerative hierarchical clustering and K-means. (We used both a “standard” K-means algorithm and a “bisecting ” K-means algorithm.) Our results indicate that the bisecting K-means technique

Thumbs up? Sentiment Classification using Machine Learning Techniques

by Bo Pang, Lillian Lee, Shivakumar Vaithyanathan - IN PROCEEDINGS OF EMNLP , 2002
"... We consider the problem of classifying documents not by topic, but by overall sentiment, e.g., determining whether a review is positive or negative. Using movie reviews as data, we find that standard machine learning techniques definitively outperform human-produced baselines. However, the three mac ..."
Abstract - Cited by 1101 (7 self) - Add to MetaCart
We consider the problem of classifying documents not by topic, but by overall sentiment, e.g., determining whether a review is positive or negative. Using movie reviews as data, we find that standard machine learning techniques definitively outperform human-produced baselines. However, the three

A Survey of Image Registration Techniques

by Lisa Gottesfeld Brown - ACM Computing Surveys , 1992
"... Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors or from different viewpoints. Over the years, a broad range of techniques have been developed for the various types of data and problems. These ..."
Abstract - Cited by 979 (2 self) - Add to MetaCart
Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors or from different viewpoints. Over the years, a broad range of techniques have been developed for the various types of data and problems

MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS

by Yehuda Koren, Robert Bell, Chris Volinsky - IEEE COMPUTER , 2009
"... As the Netflix Prize competition has demonstrated, matrix factorization models are superior to classic nearest-neighbor techniques for producing product recommendations, allowing the incorporation of additional information such as implicit feedback, temporal effects, and confidence levels. Modern co ..."
Abstract - Cited by 593 (4 self) - Add to MetaCart
As the Netflix Prize competition has demonstrated, matrix factorization models are superior to classic nearest-neighbor techniques for producing product recommendations, allowing the incorporation of additional information such as implicit feedback, temporal effects, and confidence levels. Modern

An iterative image registration technique with an application to stereo vision

by Bruce D. Lucas, Takeo Kanade - In IJCAI81 , 1981
"... Image registration finds a variety of applications in computer vision. Unfortunately, traditional image registration techniques tend to be costly. We present a new image registration technique that makes use of the spatial intensity gradient of the images to find a good match using a type of Newton- ..."
Abstract - Cited by 2897 (30 self) - Add to MetaCart
Image registration finds a variety of applications in computer vision. Unfortunately, traditional image registration techniques tend to be costly. We present a new image registration technique that makes use of the spatial intensity gradient of the images to find a good match using a type of Newton

TCP Vegas: New techniques for congestion detection and avoidance

by Lawrence S. Brakmo, Sean W. O’malley, Larry L. Peterson - In SIGCOMM , 1994
"... Vegas is a new implementation of TCP that achieves between 40 and 70 % better throughput, with one-fifth to onehalf the losses, as compared to the implementation of TCP in the Reno distributionof BSD Unix. This paper motivates and describes the three key techniques employed by Vegas, and presents th ..."
Abstract - Cited by 600 (3 self) - Add to MetaCart
Vegas is a new implementation of TCP that achieves between 40 and 70 % better throughput, with one-fifth to onehalf the losses, as compared to the implementation of TCP in the Reno distributionof BSD Unix. This paper motivates and describes the three key techniques employed by Vegas, and presents

Software pipelining: An effective scheduling technique for VLIW machines

by Monica Lam , 1988
"... This paper shows that software pipelining is an effective and viable scheduling technique for VLIW processors. In software pipelining, iterations of a loop in the source program are continuously initiated at constant intervals, before the preceding iterations complete. The advantage of software pipe ..."
Abstract - Cited by 581 (3 self) - Add to MetaCart
This paper shows that software pipelining is an effective and viable scheduling technique for VLIW processors. In software pipelining, iterations of a loop in the source program are continuously initiated at constant intervals, before the preceding iterations complete. The advantage of software

A New Location Technique for the Active Office

by Andy Ward, Alan Jones , 1997
"... Configuration of the computing and communications systems found at home and in the workplace is a complex task that currently requires the attention of the user. Recently, researchers have begun to examine computers that would autonomously change their functionality based on observations of who or ..."
Abstract - Cited by 515 (4 self) - Add to MetaCart
or what was around them. By determining their context, using input from sensor systems distributed throughout the environment, computing devices could personalize themselves to their current user, adapt their behavior according to their location, or react to their surroundings. The authors present a

Cumulated Gain-based Evaluation of IR Techniques

by Kalervo Järvelin, Jaana Kekäläinen - ACM Transactions on Information Systems , 2002
"... Modem large retrieval environments tend to overwhelm their users by their large output. Since all documents are not of equal relevance to their users, highly relevant documents should be identified and ranked first for presentation to the users. In order to develop IR techniques to this direction, i ..."
Abstract - Cited by 694 (3 self) - Add to MetaCart
Modem large retrieval environments tend to overwhelm their users by their large output. Since all documents are not of equal relevance to their users, highly relevant documents should be identified and ranked first for presentation to the users. In order to develop IR techniques to this direction
Next 10 →
Results 1 - 10 of 379,544
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University