Results 1  10
of
46,452
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract

Cited by 13236 (32 self)
 Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based
Active Learning with Statistical Models
, 1995
"... For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative, statist ..."
Abstract

Cited by 679 (10 self)
 Add to MetaCart
, statisticallybased learning architectures: mixtures of Gaussians and locally weighted regression. While the techniques for neural networks are expensive and approximate, the techniques for mixtures of Gaussians and locally weighted regression are both efficient and accurate.
Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms
, 1998
"... This article reviews five approximate statistical tests for determining whether one learning algorithm outperforms another on a particular learning task. These tests are compared experimentally to determine their probability of incorrectly detecting a difference when no difference exists (type I err ..."
Abstract

Cited by 723 (8 self)
 Add to MetaCart
This article reviews five approximate statistical tests for determining whether one learning algorithm outperforms another on a particular learning task. These tests are compared experimentally to determine their probability of incorrectly detecting a difference when no difference exists (type I
Learning Bayesian networks: The combination of knowledge and statistical data
 Machine Learning
, 1995
"... We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simpl ..."
Abstract

Cited by 1158 (35 self)
 Add to MetaCart
We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly
Statistical phrasebased translation
, 2003
"... We propose a new phrasebased translation model and decoding algorithm that enables us to evaluate and compare several, previously proposed phrasebased translation models. Within our framework, we carry out a large number of experiments to understand better and explain why phrasebased models outpe ..."
Abstract

Cited by 944 (11 self)
 Add to MetaCart
outperform wordbased models. Our empirical results, which hold for all examined language pairs, suggest that the highest levels of performance can be obtained through relatively simple means: heuristic learning of phrase translations from wordbased alignments and lexical weighting of phrase translations
Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
, 2010
"... ..."
Statistical pattern recognition: A review
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques ..."
Abstract

Cited by 1035 (30 self)
 Add to MetaCart
techniques and methods imported from statistical learning theory have bean receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection
Accurate Methods for the Statistics of Surprise and Coincidence
 COMPUTATIONAL LINGUISTICS
, 1993
"... Much work has been done on the statistical analysis of text. In some cases reported in the literature, inappropriate statistical methods have been used, and statistical significance of results have not been addressed. In particular, asymptotic normality assumptions have often been used unjustifiably ..."
Abstract

Cited by 1057 (1 self)
 Add to MetaCart
Much work has been done on the statistical analysis of text. In some cases reported in the literature, inappropriate statistical methods have been used, and statistical significance of results have not been addressed. In particular, asymptotic normality assumptions have often been used
Learning probabilistic relational models
 In IJCAI
, 1999
"... A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract

Cited by 613 (30 self)
 Add to MetaCart
A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much
Results 1  10
of
46,452