• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 46,335
Next 10 →

Reinforcement learning: a survey

by Leslie Pack Kaelbling, Michael L. Littman, Andrew W. Moore - Journal of Artificial Intelligence Research , 1996
"... This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem ..."
Abstract - Cited by 1714 (25 self) - Add to MetaCart
of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state

Learning and development in neural networks: The importance of starting small

by Jeffrey L. Elman - Cognition , 1993
"... It is a striking fact that in humans the greatest learnmg occurs precisely at that point in time- childhood- when the most dramatic maturational changes also occur. This report describes possible synergistic interactions between maturational change and the ability to learn a complex domain (language ..."
Abstract - Cited by 531 (17 self) - Add to MetaCart
It is a striking fact that in humans the greatest learnmg occurs precisely at that point in time- childhood- when the most dramatic maturational changes also occur. This report describes possible synergistic interactions between maturational change and the ability to learn a complex domain

Sparse Bayesian Learning and the Relevance Vector Machine

by Michael E. Tipping , 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vect ..."
Abstract - Cited by 966 (5 self) - Add to MetaCart
vector machine’ (RVM), a model of identical functional form to the popular and state-of-the-art `support vector machine ’ (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer basis

What Can Economists Learn from Happiness Research?

by Bruno S. Frey, Alois Stutzer - FORTHCOMING IN JOURNAL OF ECONOMIC LITERATURE , 2002
"... Happiness is generally considered to be an ultimate goal in life; virtually everybody wants to be happy. The United States Declaration of Independence of 1776 takes it as a self-evident truth that the “pursuit of happiness” is an “unalienable right”, comparable to life and liberty. It follows that e ..."
Abstract - Cited by 545 (24 self) - Add to MetaCart
Happiness is generally considered to be an ultimate goal in life; virtually everybody wants to be happy. The United States Declaration of Independence of 1776 takes it as a self-evident truth that the “pursuit of happiness” is an “unalienable right”, comparable to life and liberty. It follows

Learning realistic human actions from movies

by Ivan Laptev, Marcin Marszałek, Cordelia Schmid, Benjamin Rozenfeld - IN: CVPR. , 2008
"... The aim of this paper is to address recognition of natural human actions in diverse and realistic video settings. This challenging but important subject has mostly been ignored in the past due to several problems one of which is the lack of realistic and annotated video datasets. Our first contribut ..."
Abstract - Cited by 738 (48 self) - Add to MetaCart
contribution is to address this limitation and to investigate the use of movie scripts for automatic annotation of human actions in videos. We evaluate alternative methods for action retrieval from scripts and show benefits of a text-based classifier. Using the retrieved action samples for visual learning, we

Dynamic Bayesian Networks: Representation, Inference and Learning

by Kevin Patrick Murphy , 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have bee ..."
Abstract - Cited by 770 (3 self) - Add to MetaCart
been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete

The PASCAL Visual Object Classes (VOC) Challenge

by M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman - INTERNATIONAL JOURNAL OF COMPUTER VISION
"... ... and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection. ..."
Abstract - Cited by 629 (20 self) - Add to MetaCart
. This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find

A Sequential Algorithm for Training Text Classifiers

by David D. Lewis, William A. Gale , 1994
"... The ability to cheaply train text classifiers is critical to their use in information retrieval, content analysis, natural language processing, and other tasks involving data which is partly or fully textual. An algorithm for sequential sampling during machine learning of statistical classifiers was ..."
Abstract - Cited by 631 (10 self) - Add to MetaCart
The ability to cheaply train text classifiers is critical to their use in information retrieval, content analysis, natural language processing, and other tasks involving data which is partly or fully textual. An algorithm for sequential sampling during machine learning of statistical classifiers

The Infinite Hidden Markov Model

by Matthew J. Beal, Zoubin Ghahramani, Carl E. Rasmussen - Machine Learning , 2002
"... We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data. Th ..."
Abstract - Cited by 637 (41 self) - Add to MetaCart
We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data

Seven principles for good practice in undergraduate education

by W. Chickering, Zelda F. Gamson , 1987
"... Apathetic students, illiterate graduates, incompetent teaching, impersonal campuses-- so rolls the drumfire of criticism of higher education. More than two years of reports have spelled out the problems. States have been quick to respond by holding out carrots and beating with sticks. There are neit ..."
Abstract - Cited by 799 (0 self) - Add to MetaCart
These seven principles are not ten commandments shrunk to a twentieth century attention span. They are intended as guidelines for faculty members, students, and administrators-- with support from state agencies and trustees-- to improve teaching and learning. These principles seem like good common sense
Next 10 →
Results 1 - 10 of 46,335
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University