Results 1  10
of
84,705
Clustering by passing messages between data points
 Science
, 2007
"... Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only if that initi ..."
Abstract

Cited by 696 (8 self)
 Add to MetaCart
Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only
Spacetime Interest Points
 IN ICCV
, 2003
"... Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatiotemporal domain and show how the resulting features often reflect interesting events that can be use ..."
Abstract

Cited by 819 (21 self)
 Add to MetaCart
Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatiotemporal domain and show how the resulting features often reflect interesting events that can
Surface reconstruction from unorganized points
 COMPUTER GRAPHICS (SIGGRAPH ’92 PROCEEDINGS)
, 1992
"... We describe and demonstrate an algorithm that takes as input an unorganized set of points fx1�:::�xng IR 3 on or near an unknown manifold M, and produces as output a simplicial surface that approximates M. Neither the topology, the presence of boundaries, nor the geometry of M are assumed to be know ..."
Abstract

Cited by 815 (8 self)
 Add to MetaCart
to be known in advance — all are inferred automatically from the data. This problem naturally arises in a variety of practical situations such as range scanning an object from multiple view points, recovery of biological shapes from twodimensional slices, and interactive surface sketching.
OPTICS: Ordering Points To Identify the Clustering Structure
, 1999
"... Cluster analysis is a primary method for database mining. It is either used as a standalone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of ..."
Abstract

Cited by 527 (51 self)
 Add to MetaCart
.g. representative points, arbitrary shaped clusters), but also the intrinsic clustering structure. For medium sized data sets, the clusterordering can be represented graphically and for very large data sets, we introduce an appropriate visualization technique. Both are suitable for interactive exploration
QSplat: A Multiresolution Point Rendering System for Large Meshes
, 2000
"... Advances in 3D scanning technologies have enabled the practical creation of meshes with hundreds of millions of polygons. Traditional algorithms for display, simplification, and progressive transmission of meshes are impractical for data sets of this size. We describe a system for representing and p ..."
Abstract

Cited by 502 (8 self)
 Add to MetaCart
and progressively displaying these meshes that combines a multiresolution hierarchy based on bounding spheres with a rendering system based on points. A single data structure is used for view frustum culling, backface culling, levelofdetail selection, and rendering. The representation is compact and can
The R*tree: an efficient and robust access method for points and rectangles
 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA
, 1990
"... The Rtree, one of the most popular access methods for rectangles, is based on the heuristic optimization of the area of the enclosing rectangle in each inner node. By running numerous experiments in a standardized testbed under highly varying data, queries and operations, we were able to design the ..."
Abstract

Cited by 1262 (74 self)
 Add to MetaCart
of the following two reasons 1 it efficiently supports point and spatial data at the same time and 2 its implementation cost is only slightly higher than that of other Rtrees.
Iterative point matching for registration of freeform curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract

Cited by 660 (8 self)
 Add to MetaCart
correspondences, which reduces the average distance between points in the two sets. Both synthetic and real data have been used to test the algorithm, and the results show that it is efficient and robust, and yields an accurate motion estimate.
The quadtree and related hierarchical data structures
 ACM Computing Surveys
, 1984
"... A tutorial survey is presented of the quadtree and related hierarchical data structures. They are based on the principle of recursive decomposition. The emphasis is on the representation of data used in applications in image processing, computer graphics, geographic information systems, and robotics ..."
Abstract

Cited by 541 (12 self)
 Add to MetaCart
, and robotics. There is a greater emphasis on region data (i.e., twodimensional shapes) and to a lesser extent on point, curvilinear, and threedimensional data. A number of operations in which such data structures find use are examined in greater detail.
Data Integration: A Theoretical Perspective
 Symposium on Principles of Database Systems
, 2002
"... Data integration is the problem of combining data residing at different sources, and providing the user with a unified view of these data. The problem of designing data integration systems is important in current real world applications, and is characterized by a number of issues that are interestin ..."
Abstract

Cited by 965 (45 self)
 Add to MetaCart
that are interesting from a theoretical point of view. This document presents on overview of the material to be presented in a tutorial on data integration. The tutorial is focused on some of the theoretical issues that are relevant for data integration. Special attention will be devoted to the following aspects
CURE: An Efficient Clustering Algorithm for Large Data sets
 Published in the Proceedings of the ACM SIGMOD Conference
, 1998
"... Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new clustering ..."
Abstract

Cited by 722 (5 self)
 Add to MetaCart
Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new
Results 1  10
of
84,705