• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 89,802
Next 10 →

Locally weighted learning

by Christopher G. Atkeson, Andrew W. Moore , Stefan Schaal - ARTIFICIAL INTELLIGENCE REVIEW , 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract - Cited by 599 (51 self) - Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias

Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope

by Aude Oliva, Antonio Torralba - International Journal of Computer Vision , 2001
"... In this paper, we propose a computational model of the recognition of real world scenes that bypasses the segmentation and the processing of individual objects or regions. The procedure is based on a very low dimensional representation of the scene, that we term the Spatial Envelope. We propose a se ..."
Abstract - Cited by 1313 (81 self) - Add to MetaCart
In this paper, we propose a computational model of the recognition of real world scenes that bypasses the segmentation and the processing of individual objects or regions. The procedure is based on a very low dimensional representation of the scene, that we term the Spatial Envelope. We propose a

Term-weighting approaches in automatic text retrieval

by Gerard Salton, Christopher Buckley - INFORMATION PROCESSING AND MANAGEMENT , 1988
"... The experimental evidence accumulated over the past 20 years indicates that text indexing systems based on the assignment of appropriately weighted single terms produce retrieval results that are superior to those obtainable with other more elaborate text representations. These results depend crucia ..."
Abstract - Cited by 2189 (10 self) - Add to MetaCart
crucially on the choice of effective term-weighting systems. This article summarizes the insights gained in automatic term weighting, and provides baseline single-term-indexing models with which other more elaborate content analysis procedures can be compared.

A Reliable Multicast Framework for Light-weight Sessions and Application Level Framing

by Sally Floyd, Van Jacobson, Steven McCanne, Ching-gung Liu, Lixia Zhang , 1995
"... This paper... reliable multicast framework for application level framing and light-weight sessions. The algorithms of this framework are efficient, robust, and scale well to both very large networks and very large sessions. The framework has been prototype in wb, a distributed whiteboard application ..."
Abstract - Cited by 1085 (45 self) - Add to MetaCart
This paper... reliable multicast framework for application level framing and light-weight sessions. The algorithms of this framework are efficient, robust, and scale well to both very large networks and very large sessions. The framework has been prototype in wb, a distributed whiteboard

Active Learning with Statistical Models

by David A. Cohn, Zoubin Ghahramani, Michael I. Jordan , 1995
"... For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative, statist ..."
Abstract - Cited by 679 (10 self) - Add to MetaCart
, statistically-based learning architectures: mixtures of Gaussians and locally weighted regression. While the techniques for neural networks are expensive and approximate, the techniques for mixtures of Gaussians and locally weighted regression are both efficient and accurate.

What is a hidden Markov model?

by Sean R. Eddy , 2004
"... Often, problems in biological sequence analysis are just a matter of putting the right label on each residue. In gene identification, we want to label nucleotides as exons, introns, or intergenic sequence. In sequence alignment, we want to associate residues in a query sequence with ho-mologous resi ..."
Abstract - Cited by 1344 (8 self) - Add to MetaCart
, and a polyadenylation signal. All too often, piling more reality onto a fragile ad hoc program makes it collapse under its own weight. Hidden Markov models (HMMs) are a formal foundation for making probabilistic models of

A distributed, developmental model of word recognition and naming

by Mark S. Seidenberg, James L. McClelland - PSYCHOLOGICAL REVIEW , 1989
"... A parallel distributed processing model of visual word recognition and pronunciation is described. The model consists of sets of orthographic and phonological units and an interlevel of hidden units. Weights on connections between units were modified during a training phase using the back-propagatio ..."
Abstract - Cited by 706 (49 self) - Add to MetaCart
A parallel distributed processing model of visual word recognition and pronunciation is described. The model consists of sets of orthographic and phonological units and an interlevel of hidden units. Weights on connections between units were modified during a training phase using the back

Spatio-temporal energy models for the Perception of Motion

by Edward H. Adelson, James R. Bergen - J. OPT. SOC. AM. A , 1985
"... A motion sequence may be represented as a single pattern in x-y-t space; a velocity of motion corresponds to a three-dimensional orientation in this space. Motion sinformation can be extracted by a system that responds to the oriented spatiotemporal energy. We discuss a class of models for human mot ..."
Abstract - Cited by 904 (9 self) - Add to MetaCart
A motion sequence may be represented as a single pattern in x-y-t space; a velocity of motion corresponds to a three-dimensional orientation in this space. Motion sinformation can be extracted by a system that responds to the oriented spatiotemporal energy. We discuss a class of models for human

Model-Based Clustering, Discriminant Analysis, and Density Estimation

by Chris Fraley, Adrian E. Raftery - JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION , 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract - Cited by 573 (29 self) - Add to MetaCart
for model-based clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster

Rules, discretion, and reputation in a model of monetary policy

by Robert J. Barro, David B. Gordon - JOURNAL OF MONETARY ECONOMICS , 1983
"... In a discretionary regime the monetary authority can print more money and create more inflation than people expect. But, although these inflation surprises can have some benefits, they cannot arise systematically in equilibrium when people understand the policymakor's incentives and form their ..."
Abstract - Cited by 812 (9 self) - Add to MetaCart
the policymaker and the private agents, it is possible that reputational forces can substitute for formal rules. Here, we develop an example of a reputational equilibrium where the outcomes turn out to be weighted averages of those from discretion and those from the ideal rule. In particular, the rates
Next 10 →
Results 1 - 10 of 89,802
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University